
Git 2.26.2 for z/OS Release Notes
This document provides tips for effectively using the Rocket Software z/OS port of Git 2.26.2. The reader should already have some familiarity with
Git, z/OS, and z/OS Unix System Services (USS).

z/OS-specific changes since the previous (2.14.4) release
Setup

Prerequisite software
z/OS
z/OS Miniconda
Other Rocket open source products

Installation
Using Git attributes
USS File tagging
Git and tags
Supported encodings
.gitattributes examples
Cloning an open source repository
Downloading a certificate bundle

Compatibility with previous releases
Migrating from working-tree-encoding to zos-working-tree-encoding

Why is this necessary?
What action is required?
References

Migrating from Git for z/OS 2.3.5 or Git for z/OS 2.14.4
Restrictions
Known issues
Appendix A - Supported character sets in Git for z/OS 2.26.2

z/OS-specific changes since the previous (2.14.4) release
In addition to the platform-independent changes between Git release 2.14.5 and 2.26.2, the following changes apply to the z/OS port.

Many more character encodings are now supported on z/OS
The Git encoding (the character encoding used in the Git server repositories) for text will now always be UTF-8
There are no longer 'default' encodings applied for files in the working tree. This means that, for any given file, if no treatment is specified
in gitattributes file:

Git will not set a file tag during clone/checkout
Git will not allow a tagged file to be added to the index

Setup

Prerequisite software

z/OS

z/OS 2.3 or higher is required for Git 2.26.2 for z/OS.

It is recommended that the fix for APAR OA52954 (ABEND0C4 RSN11 IN BPXPRECP WHEN COPYING EDSAMAGICPATH) be APPLYed.

z/OS Miniconda

Git 2.26.2 for z/OS (and all Rocket z/OS tool and language ports) are installed via conda and thus conda must first be installed on your system. In
order to install conda, download and install z/OS Miniconda which contains all that is needed to install and run conda. z/OS Miniconda can be
downloaded from the Rocket Customer Portal at .http://my.rocketsoftware.com/

Other Rocket open source products

Although Git 2.26.2 for z/OS does depend upon other open source languages (Perl) and tools (bash, curl, expat, libtag, openssl, zlib), these will be
automatically installed when you install Git via conda. There is no need to manually download and install these dependencies.

Must-read: Migrating from Git for z/OS 2.3.5 or Git for z/OS 2.14.4

http://my.rocketsoftware.com/

Installation

Git 2.26.2 for z/OS is downloaded and installed via conda. Per the pre-requisites, you must already have conda installed in order to download and
install z/OS Git.

Installation command:

conda install -c <channel> git

Using Git attributes

The previous versions of Git for z/OS introduced two concepts:

git-encoding: The character encoding of files stored in the Git repository. These files are part of Git's internal database and are never
directly edited by users.
zos-working-tree-encoding: the character encoding of files stored in the working directory. These files are the reason Git exists. They
are the user-defined content of the repository, and are what the user edits and compiles. This encoding is controlled via the Git attributes

.system

If no attributes are set, Git for z/OS behaves essentially the same as it does on all other platforms: the encoding is never altered when files are
copied between the working directory and the repository.

If no attributes are set, Git for z/OS will not set any tags on files in the working tree.

USS File tagging

z/OS Git relies upon the feature of USS. File tagging is used to identify the code set of text data within files. file tagging

These tags can be examined by using either the or the . The following command with the optionls -T command with the optionchtag -p
examples demonstrate the output of these commands for a directory in which file tags have been set:

bash-2.03$ ls -lT
total 1000
t ISO8859-1 T=on -rw-r--r-- 1 TSJLC PDUSER 3240 Oct 20 14:22 Makefile
t ISO8859-1 T=on -rw-r--r-- 1 TSJLC PDUSER 144 Oct 20 14:22 README.md
- untagged T=off -rwxr-xr-x 1 TSJLC PDUSER 372736 Oct 20 15:38 sysevent
t ISO8859-1 T=on -rw-r--r-- 1 TSJLC PDUSER 1224 Oct 20 14:22 sysevent.cpp
m IBM-1047 T=off -rw-r--r-- 1 TSJLC PDUSER 126000 Oct 20 15:38 sysevent.o
bash-2.03$ chtag -p *
t ISO8859-1 T=on Makefile
t ISO8859-1 T=on README.md
- untagged T=off sysevent
t ISO8859-1 T=on sysevent.cpp
m IBM-1047 T=off sysevent.o
bash-2.03$

Most z/OS commands that manipulate text files (editors, such as and 19.34, the XL C and C++ compilers, etc.) will vi emacs make, grep,
respect file tags, if present, and "do the right thing" with the text. If a file is not tagged, it is generally presumed to be encoded in IBM-1047
(EBCDIC).

The encoding tag on a file can be changed with using , as follows:the chtag command

chtag -t -c iso8859-1 <filename> # to tag as ASCII
chtag -t -c ibm-1047 <filename> # to tag as EBCDIC
chtag -t -c utf-8 <filename> # to tag as UTF-8

Note: changing a file tag does not affect the binary content of a file.

Note: attribute is no longer used in Git for z/OS 2.26.2git-encoding

Git 2.26.2 ignores attribute and encodes the content from the specified encoding to UTF-8. To avoid misunderstanding git-encoding
it is recommended to remove all attributes from .gitattributes.git-encoding

https://git-scm.com/docs/gitattributes
https://git-scm.com/docs/gitattributes
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxa400/bpxug294.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxa500/lscmd.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxa500/chtag.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxa500/chtag.htm

Git and tags

When you add files to the index, Git verifies that the file tag corresponds to the or attribute. If the file tag zos-working-tree-encoding binary
and attribute don't match, Git fails with one of the following errors:

fatal: can't add "<filename>": file is untagged, set correct file tag
fatal: can't add "<filename>": file tag (<file-tag-encoding>) does not match its attributes (<zos-working-tree-
encoding>)
fatal: can't add "<filename>": file is tagged, set corresponding zos-working-tree-encoding attribute or reset
file tag

When files in the working directory are updated by Git (via, for example, git checkout), they are converted and tagged according to (zos-)
 attribute using the following behavioral model.working-tree-encoding

Git attributes setting Current file tag Command behavior

git add git checkout

binary (zos-)working-tree-encoding command status conversion command status conversion

specified* regardless* set binary ok no conversion ok no conversion

not binary fails ok, updates tag

not set fails ok, sets tag

not specified specified set match ok encoding ↔ UTF-8 ok UTF-8 ↔ encoding

doesn't match fails ok, updates tag

not set fails ok, sets tag

not specified not specified set fails ok. resets tag no conversion

not set ok no conversion ok, tag isn't set

*Note: if both working-tree-encoding and binary attributes are specified (and no zos-working-tree-encoding), the working-tree-encoding attribute
will take precedence in Git for z/OS 2.26.2 and the file will be converted.

Supported encodings

A variety of encodings are now supported in Git for z/OS 2.26.2. If no attributes are set, the encoding is never altered when files are copied
between the working directory and the repository. Otherwise, Git re-encodes the content from the encoding specified in zos-working-tree-
encoding attribute to UTF-8 and back. The set of supported encodings is based on the z/OS iconv implementation. You can find a list of CCSIDs
which are fully supported in attribute in the Appendix A, "Supported character sets in Git for z/OS 2.26.2". zos-working-tree-encoding
Character encodings not listed in Appendix A may work for you (if they are fully supported by iconv) however they have not been tested and are
thus not fully supported.

In heterogeneous deployments (e.g. both USS and Windows Git clients), the limitations of your zos-working-tree-encoding attribute choices must
be respected across all Git clients. For example, given two Git client clones of a text file - one on USS using IBM-1047 encoding and one on
Windows using UTF-8 encoding - you must not add an IBM-930 character to the same file on your Windows system.

.gitattributes examples

As noted, the Git attribute system is used to specify the encoding of files in both the Git repository and the working directory. Attributes are set by
creating an attribute specification, which consists of a file-matching pattern (as specified when creating a) and one or more .gitignore file
attributes. The attribute specification can reside in either the working directory (in a file) or in the Git repository (usually named .gitattributes .

), in the file .git info/attributes

When stored in the working directory, the file can be committed to the repository like any other file, in which case the attribute .gitattributes
specification will be automatically applied when the working directory is created via .git checkout

Some projects might not want to introduce a z/OS-specific file into the repository. In these cases, the attributes can be stored in the .git/info
 file./attributes

Note: Attribute specifications, whether in or , be encoded in ISO8859-1 or UTF-8..gitattributes .git/info/attributes must

A typical Git attributes file might look something like this:

https://git-scm.com/docs/gitignore

git's files (which MUST be ASCII or UTF-8)
.gitattributes zos-working-tree-encoding=iso8859-1
.gitignore zos-working-tree-encoding=iso8859-1

The default for text files
*.cpp zos-working-tree-encoding=ibm-1047
*.md zos-working-tree-encoding=iso8859-1

Binary files
*.jpg binary
*.png binary
*.gif binary
*.zip binary

Note: General usage specification of Git attributes files can be found and specific documentation of binary option can be found .here here

A Git attribute specification can be tested by using the command:git check-attr

bash-2.03$ git check-attr -a *
Makefile: zos-working-tree-encoding: iso8859-1
README.md: zos-working-tree-encoding: iso8859-1
sysevent.cpp: zos-working-tree-encoding: ibm-1047
*.png: binary: set
*.png: diff: unset
*.png: merge: unset
*.png: text: unset
bash-2.03$

Cloning an open source repository

The remote access protocols currently supported by Git for z/OS are and .ssh https

To use , you will need ssh access credentials on the remote server. In the case of , accounts are available for free, and publicly-ssh github
readable repositories do not require any further authorization to be cloneable.
To use , you generally do need credential on the remote server. However, you need credentials to push code to the remote https not do
server.

Here is an example of cloning a repository from github. If you have an account on github, this should work once you have installed Git for z/OS and
configured the environment correctly.

bash-2.03$ git clone -v git@github.com:zorts/hello_world.git
Cloning into 'hello_world'...
remote: Counting objects: 13, done.
remote: Compressing objects: 100% (8/8), done.
remote: Total 13 (delta 3), reused 13 (delta 3), pack-reused 0
Receiving objects: 100% (13/13), done.
Resolving deltas: 100% (3/3), done.
Checking connectivity... done.
bash-2.03$

This particular repository has a file in its top-level directory that will cause files to be checked out as EBCDIC. .gitattributes

Downloading a certificate bundle

The z/OS port of Git 2.26.2 supports the Git remote access protocol in addition to the protocol. To use this, you must set the https ssh
environment variable to point to a file containing the X.509 certificates of the public Certificate Authorities, in PEM format.GIT_SSL_CAINFO

If you do not already have a suitable certificate file, you can download a current copy of the file from a trusted source and verify the signature of
the file. A suggested source is the . If you have the Rocket ports of and installed, you can use the following web sitecurl curl openssl
commands. These assume that:

The path of the directory in which Git and the related tools were installed is in the environment variable .RSUSR
You have write permission to that directory.
You wish to store the certificate file in that directory.

https://git-scm.com/docs/gitattributes
https://git-scm.com/docs/gitattributes#_using_macro_attributes
https://github.com/
https://curl.haxx.se/docs/caextract.html

Make sure that there is an "etc" subdirectory in the Rocket ported tools directory
mkdir -p $RSUSR/etc
cd $RSUSR/etc

Get the certificate file
curl -s -k https://curl.haxx.se/ca/cacert.pem -o cacert.pem

Get the signature file and extract just the hash
curl -s -k https://curl.haxx.se/ca/cacert.pem.sha256 | awk ' {print $1}' > cacert.pem.sha256

Generate the hash on the certificate file and compare it to the signature file.
If the signature matches, there will be no output from diff.
openssl dgst -sha256 cacert.pem | awk ' {print $2}' | diff - cacert.pem.sha256

Once this has been done, you can set to point to the file:GIT_SSL_CAINFO

export GIT_SSL_CAINFO=$RSUSR/etc/cacert.pem

It is also possible for a Git user to disable the certificate checking by entering the following command. This is recommended.not

git config --global http.sslVerify false

Compatibility with previous releases

Migrating from working-tree-encoding to zos-working-tree-encoding

The initial release of Git for z/OS (version 2.3.5) used rather than for controlling the working-tree-encoding zos-working-tree-encoding
encoding of files in the working tree. It is vital that such usage be migrated as soon as possible to the new attribute name.

Why is this necessary?

Release 2.18 of the platform-generic git code introduced a git attribute with the same name (as the one used by the working-tree-encoding)
Rocket z/OS port of release 2.3.5. The meaning is essentially the same; however, this means that attempts to use a repository prepared on z/OS
with other open source platforms (such as Windows, or the servers that typically run git servers such as GitHub or BitBucket) will now attempt to
process this attribute, almost certainly with undesired results. It was considered unlikely that this attribute would ever appear in the platform-
generic git; this turned out to be wrong.

On all platforms supported by Git 2.18+ forces conversion of the file between UTF-8 and the encoding specified in the working-tree-encoding
attribute without respect to other attributes set for the file. With z/OS Git 2.26.2 where multiple uses of and working-tree-encoding zos-

 are specified for the same file it is important to understand which take precedence:working-tree-encoding and binary

 takes precedence over binary zos-working-tree-encoding
 takes precedence over zos-working-tree-encoding working-tree-encoding

 takes precedence over working-tree-encoding binary

Because this is a circular order of precedence, it is vital you not use all three for the same file or unpredictable results will ensue.

What action is required?

Git repositories on z/OS that use the attribute should be altered immediately to use the new working-tree-encoding zos-working-tree-
 attribute.encoding

The attribute will continue to be honored on z/OS; however, as time goes on and git on other platforms is updated to working-tree-encoding
2.18 and beyond, the likelihood of problems when using GitHub, BitBucket, and Windows git-based tools will increase. When processed by git
2.26.2, the attribute takes priority over .zos-working-tree-encoding working-tree-encoding

References

Background discussion on why working-tree-encoding was added to the platform-generic code
The first report of the conflict involving the z/OS attribute

Migrating from Git for z/OS 2.3.5 or Git for z/OS 2.14.4

https://public-inbox.org/git/1287763608.31218.63.camel@drew-northup.unet.maine.edu/
https://public-inbox.org/git/OF5D40FE06.C18CD7CD-ON002582B9.002B7A02-002582B9.002B7A07@notes.na.collabserv.com/

If you have been working with previous releases Git for z/OS, you must push recent changes to the remote repository with the old version of Git
and clone the repository with Git for z/OS 2.26.2.

When you clone the repository with Git for z/OS 2.26.2, you need to run command. You might see that Git marks some files with the git status
attribute as , even if you didn't modify them. modified

Usually it happens if you work in the repository, which had files encoded in ISO8859-1 in the index and the files have bytes which are converted to
bytes greater than x7F in ISO88859-1. This is an expected behavior. Git for z/OS 2.26.2 does real-time conversion to UTF-8 to check if there is a
difference between a file in the repository index and working directory. The files used to be encoded in ISO8859-1 in the repository index. If the
ISO8859-1 representation doesn't match that in UTF-8, the file will be marked as modified. We recommend to update the files in the index
(commands:).git add <filename>; git commit

Also it can happen if the file in the index has a character which doesn't have a corresponding character in the encoding defined in ()zos- working-
 attribute. Note that iconv on z/OS replaces such characters with a substitution character without any warning or error message. tree-encoding

You need to exclude such characters from the file or change () attribute.zos- working-tree-encoding

Restrictions
Some files used by Git be encoded as ISO8859-1 or UTF-8. These include:must

Git attribute files, whether in or .git/info/attributes .gitattributes
.gitignore files

The only remote protocols supported are and .ssh https
Only client mode is supported; in other words, Git for z/OS can clone from, and push to, remote repositories via , but ssh or https
cannot be the target of clone and push from other clients.
In heterogeneous deployments (e.g. both USS and Windows Git clients), the limitations of your zos-working-tree-encoding attribute
choices must be respected across all Git clients. For example, given two Git client clones of a text file - one on USS using IBM-1047
encoding and one on Windows using UTF-8 encoding - you must not add an IBM-930 character to the same file on your Windows system.
The Git interface to Subversion () is not supported.git-svn

Known issues
Very large repositories (especially repositories with a lot of history) may cause clone and checkout operations to fail with this symptom:

fatal: Out of memory? mmap failed: EDC5124I Too many open files. (errno2=0x07360344)

The solution is to restrict Git to using less memory, by setting these configuration variables:

pack.packSizeLimit 20m
core.packedGitWindowSize 16m
core.packedGitLimit 32m
pack.windowMemory 32m
pack.thread 1
pack.deltaCacheSize 1m
Git for z/OS relies on the z/OS file tagging facility. For this reason, Git repositories on z/OS reside in file systems that support that must
facility. Notably, a file system mount via NFS from a non-z/OS system cannot be used.

Appendix A - Supported character sets in Git for z/OS 2.26.2

Character set # Character set # Character set

1. IBM-037 23. IBM-935 45. IBM-1156

2. IBM-273 24. IBM-939 46 IBM-1157

3. IBM-274 25. IBM-1025 47. IBM-1158

4. IBM-275 26. IBM-1027 48. IBM-1165

5. IBM-277 27. IBM-1047 49. IBM-1364

6. IBM-278 28. IBM-1112 50. IBM-1390

7. IBM-280 29. IBM-1122 51. IBM-1399

8. IBM-282 30. IBM-1123 52. IBM-4971

Note: Once you change a repository with Git for z/OS 2.26.2, this repository won't be compatible with previous versions of Git for z/OS. It
is vital that entire team will move to the new version of Git.

https://git-scm.com/docs/git-svn

9. IBM-284 31. IBM-1124 53. IBM-5123

10. IBM-285 32. IBM-1140 54. IBM-8482

11. IBM-297 33. IBM-1141 55. IBM12712

12. IBM-424 34. IBM-1142 56. BIG5

13. IBM-425 35. IBM-1143 57. ISO8859-1

14. IBM-500 36. IBM-1144 58. ISO8859-2

15. IBM-870 37. IBM-1145 59. ISO8859-5

16. IBM-871 38. IBM-1146 60. ISO8859-7

17. IBM-875 39. IBM-1147 61. ISO8859-8

18. IBM-901 40. IBM-1148 62. ISO8859-9

19. IBM-921 41. IBM-1149 63. TIS-620

20. IBM-923 42. IBM-1153 64. UTF-8

21. IBM-924 43. IBM-1154

22. IBM-933 44. IBM-1155

	Git 2.26.2 for z/OS Release Notes

