

U2 Support’s U2 Replication
Monitoring Phantoms and Exception
Scripts

Deployment and Usage

March 2014

Last Revision 15th February 2021

2

Notices

Edition

Publication date: March 2014

Product Versions: UniVerse 11.1,11.2, 11.3 and 12.1 UniData 7.2, 7.3 8.1 and 8.2

Copyright

© Rocket Software, Inc. or its affiliates 1985– 2021. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks

go to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this

document may be covered by the trademarks, service marks, or product names of their respective

owners.

Examples

This information might contain examples of data and reports. The examples include the names of

individuals, companies, brands, and products. All of these names are fictitious and any similarity to

the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket

Software, Inc. or its affiliates, are furnished under license, and may be used and copied only in

accordance with the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the

use, import, or export of encryption technologies, and current use, import, and export

regulations should be followed when exporting this product.

Contact information

Website: www.rocketsoftware.com

Rocket Software, Inc. Headquarters

77 4th Avenue, Suite 100

Waltham, MA 02451-1468

USA

Tel: +1 781 577 4321

Fax: +1 617 630 7100

http://www.rocketsoftware.com/

3

Contacting Global Technical Support

If you have current support and maintenance agreements with Rocket Software, you can access the

Rocket Customer Portal to report and track a problem, to submit an enhancement request or

question, or to find answers in the U2 Knowledgebase. The Rocket Customer Portal is the primary

method of obtaining support.

To log in to the Rocket Customer Portal, go to:

www.rocketsoftware.com/support

If you do not already have a Rocket Customer Portal account, you can request one by clicking Need

an Account? on the Rocket Customer Portal login page.

Alternatively, you can contact Global Technical Support by email or by telephone:

Email: u2support@rocketsoftware.com

Telephone:

North America +1 800 729 3553

United Kingdom/France +44 (0) 800 773 771 or +44 (0) 20 8867 3691

Europe/Africa +44 (0) 20 8867 3692

Australia +1 800 707 703 or +61 (0) 29412 5450

New Zealand +0800 505 515

http://www.rocketsoftware.com/support
mailto:u2support@rocketsoftware.com

4

Contents

Notices .. 2

Contacting Global Technical Support ... 3

Chapter 1: Introduction to U2 Replication Monitoring and Exception Handling .. 6

Prerequisites .. 6

Exception Action Script .. 7

UNIX Exception Script .. 8

Testing the script ... 8

Emails Produced within the script... 8

Environment/Shell Variables .. 9

Walkthrough of the Script Logic ... 10

Notes ... 11

UniData Example ... 13

UniVerse Example .. 25

Windows Exception Script .. 38

Testing the Windows Exception Script ... 38

Exception Script Variables .. 38

Walkthrough of the Script Logic ... 40

Notes ... 42

UniData and UniVerse RepWinExcepVariables.psm1 .. 43

UniData Example ... 44

UniVerse Example .. 57

Chapter 2: Introduction to the Monitor Phantoms .. 70

Using the VB.NET Deployment Program ... 72

Login Form .. 72

Monitor Parameters Form .. 75

Performance Form ... 78

Server-Side Menus ... 81

Extra Programs Supplied ... 83

CHK.REP.CFG .. 83

REP.CONFIGFILE ... 83

PUBLISHER.SYNC.ONE.BY.ONE ... 83

REP.FREE.FILE.SLOTS ... 83

PUB.DISPLAY.LSNS .. 83

offline_log_enq .. 84

5

Disaster Recovery Notice ... 85

6

Chapter 1: Introduction to U2 Replication

Monitoring and Exception

Handling

The purpose of this document is to demonstrate and make available the approaches and tools that

the U2 Team has taken to assist customers both internal and external in successful deployments of

U2 Replication.

U2 Replication is a very powerful, very configurable but very complex part of both UniData and

UniVerse. Given its complexity our current recommendation is that U2 Replication should not be

deployed without the assistance of Rocket Solutioning Services. See the Disaster Recovery Notice.

Many customers have historically become very useful in deploying there U2 Applications into

environments where the people responsible for those environments have little or no specific U2

Administration knowledge. This has been one of the many positives of deploying U2 over a long

period time and we’d like that to continue.

To administer and maintain U2 Replication then specific U2 Administration skills and knowledge

needs to be acquired. To minimize this requirement, the processes and tools that we discuss in this

document are designed to act as proactive notifications of any problems, which may have otherwise

gone unnoticed and hence become a large problem later.

We also discuss how the use of an exception script when correctly designed can be used to

automatically reestablish replication after some things as network interruptions.

Prerequisites

To be able to use all the options within the monitoring suite you will need to be logged into the U2

server as an Administrator or a user with Administration privileges. You will need permissions to run

the reptool / uvreptool command line utility.

The example Windows Power Shell scripts require a minimum of Powershell 5 for the scripts to

work.

7

Exception Action Script

U2 Replication contains a configurable exception action in the repsys file. This configurable is called

EXCEPTION_ACTION. On the UNIX implementations this script is UNIX shell script and on the

Windows implementation, it is a bat file. In the configurable you define the absolute path to the

script name.

The EXCEPTION_ACTION trigger works in two ways within U2 Replication and provides an

administrator the ability a slot to run their own code in the event of any non-DBA ordered

suspension of replication. (I.e. if replication was suspended because of a request entered from the

command prompt or via the XAdmin tool then the trigger is not activated).

There is one other event within U2 Replication that will trigger the EXCEPTION_ACTION and that is

if the inbuilt ‘heartbeat’ encounters a TIMEOUT. U2 Replication has an inbuilt ‘heartbeat’ that is in

addition to any O/S level timeouts applied to the TCP/IP communication layers. Each replication

group sends a control packet between the publisher and subscriber approximately every 3 seconds.

If these control packets go unacknowledged for the number of seconds defined by the TIMEOUT

configurable or if the TCP/IP communication layer is lost then Replication is suspended and the

EXCEPTION_ACTION is triggered.

Over a period of time we’ve developed and fine-tuned a three-phase exception action script. The

first phase reports any unexpected suspension and can be used to send an email notification of the

suspension to a predefined list of recipients. The second and third phases of the script are only run

on the subscribing system as if they were also to run on the publisher this could result in a reciprocal

firing of the script.

The second phase of the script then makes sure that all the replication groups have been

successfully suspended and again it can notify the predefined list of recipients with the results of

that check. The third and final phase only proceeds if the second phase has confirmed a successful

suspension of all the groups.

The third phase of the script attempts to reestablish replication between the machines via the use

of replication sync command. Again, the predefined list of recipients can be notified of the results of

this action.

The examples provided use mailx/sendmail in UNIX as the email client and on windows it’s a smtp

Gmail account. As with all the examples and programs provided here they are ‘as is’. Support will

not be assisting in their modification or the setup of any required mail client that’s needed within

your environment to ensure their correct operation. If further assistance is required then please

refer to the following notice DisaterRecoveryNotice.

8

UNIX Exception Script

The example exception scripts for UNIX are distributed within the phantom monitor deployment

program which is discussed later in this document (See the InstallButton in the VB deployment

program section). Both the UniData and UniVerse versions also support the passing in of two

arguments.

• ‘-x’ will turn on standard script debugging using the ‘set –x’ command

• ‘-v’ will get the script just to report the script version then exit

Testing the script

The script was originally designed to be run via the firing of the EXCEPTION_ACTION phrase being

activated within UniData / UniVerse as It relied on several environment variables that are only set if

the script is fired off in the expected manner.

Starting at version 1.6.4 of the script it can now be tested outside of the replication environment by

just running the script as you would any other shell script. The script will detect it is running outside

of replication and default the $UNIREP_REMOTESYS to ‘primary’ (see the script variables section)

and this should be reviewed and changed accordingly for your installation.

Emails Produced within the script

The shell script variable MAILRECS defines the list of email recipients who should receive any email

notification sent from the script in relation to the firing of the script and the details of the steps

performed within the script. In conjunction with the MAILRECS variable the SENDMAILCMD

variable defines which command should be used to send the email notifications.

The example in the script is based around the standard UNIX sendmail command. If you wish to use

a different mail command then the areas of the script where the sendmail command is used will

need modification for your installation.

The script will send several emails and constructs the sendmail commands similar to : -

echo "Subject: REPLICATION DISABLED" | cat - $reportfilename |

$SENDMAILCMD -F $machinename -t $MAILRECS

The script should be reviewed for all occurrences of sendmail and modified as required.

9

Environment/Shell Variables

The script uses several Environment and Shell variables during its running. Some of these can be

changed to meet your installation requirements and others shouldn’t be changed. The following

table describes the variables that can be changed and explains some of the other major reference

variables used in the script. If the variable is not described in the table below then it would be

unwise to change it unless you understand shell script and are confident of the change you are

making.

Variables Changeable Usage / Description
MAILREC Y Discussed in previous section
SENDMAILCMD Y Discussed in previous section
UDTHOME / UVHOME Y Used to determine the install location of UV/UD.

Default is /apps/ud or /app/uv
UDTBIN/UVBIN Y Used with UDTHOME/UVHOME default is

UDTHOME/bin
PUB_STOP
PUB_EXIT
PUB_SHUTDOWN PUB_RUNNIG
PUB_DO_RECONFIG
PUB_DO_BACKSYNC
PUB_DO_FAILOVER
REP_RUNNING
REP_SUSPENDED
REP_SYNCING
REP_DO_SYNC
REP_EXIT
REP_DISABLED
SUB_STOP
SUB_EXIT
SUB_SHUTDOWN
SUB_RUNNING
SUB_DO_RECONFIG
SUB_SYNCING
SUB_DO_FAILOVER
SUB_RESYNCING

N Hardcoded to match the return codes produced
from the ud/uv_repadmin report command. The
script uses these to determine the status of
replication.

REP_EXCEP_SCRIPT_VERSION Y Used to mark version of scripts
CROSS_GROUP_TRANSACTION Y This defaults to 0 and when set to 0 will check to

see if Cross Group Transactions are active on the
machine. If you set this to 1 it means the script
will always assume Cross Group Transactions are
present and will avoid the overhead of checking.
It is recommended you set to this to 1 if you
know your installation uses Cross Group
Transactions

PUBCHECKMIN
SUBCHECKMIN

Y These values default to 2 and are used to ensure
that once the script has completed the script will

10

DISCHECKMIN not be run for another 2 minutes even if
requested to. This is to avoid the script being
fired off in repeated succession.

reportfilename Y Defines the location that the trace file from the
script is placed (The file name must contain the
$UNIREP_REMOTESYS as part of the name)

scriptrunningname Y Defines the name of the control file that the
script uses to ensure that only one instance of
the script can be running at any one time (The
file name must contain the
$UNIREP_REMOTESYS as part of the name)

RESYNCSLEEP Y This values defaults to 120 and defines the
number of seconds that the script will sleep on a
subscriber before attempting to issue a
uv/ud_repadmin sync command to correct the
replication suspension.

publisher
subscriber
disabled
unexpectedcode

N Set by the script via the result of the
ud/uv_repadmin report command in order to
determine the status of the system on which the
script is running

LOGKEEPCNT Y Determines the number of previous versions of
the trace file will be kept the default is 5

scriptruncountfile Y Defines the name of the file that contains the
last run counter (The file name must contain the
$UNIREP_REMOTESYS as part of the name)

outsidereplication N Determines if the script has been fired via the
EXCEPTION_ACTION phrase

UNIREP_REMOTESYS Y The default value is ‘primary’ and should be
reviewed for your installation if you wish to test
the script outside of replication

Walkthrough of the Script Logic

1. The environment variables UDTHOME / UVHOME / UDTBIN / UVBIN are checked and if not set

prior to the script execution are set to the defaults in the script.

2. The ud_reapdmin status code environment variables are set, along with the script version and

cross group transaction override check variables

3. The script checks to see if a debug request or version request was passed to it via an ‘x’ or ‘v’

option.

a. If a version request is made the version is reported and the script exits

b. If a debug request is made the debug option is set for the script

4. The scriptrunningname variable is checked

11

a. If the file is present, the presence of the file is reported to the log file and an email

notification sent and the script exists

5. The lastruncount is determined from the scriptruncountfile and copies the last tracefile to

tracefile.lastruncount

a. The lastruncount is incremented by 1, if this exceeds the maximum count then the

lastruncount is set to 1 and written back to the scriptruncountfile

6. The ud/uv_repadmin report command is used to determine the system status within replication.

The result can be

a. A Publisher

b. A Subscriber

c. Disabled

d. Undetermined

7. The next allowed run time of the script is calculated

a. If the system time is before that time, the script exits

8. An email is sent out from the script detailing that replication was suspended along with the

contents of the script trace log

a. If the system is not a subscriber the script exits at this point as the recovery attempt will

only be run from a subscriber to avoid unwanted reciprocal firing of the script

9. Each group is checked in turn to ensure it has been correctly suspended. Each group will be

checked up to 10 times with a 5 second sleep between each check cycle.

a. An email notification of the success / failure of the checking process is then sent out

b. If the script was unable to confirm the suspension of all the groups an email is sent to

this effect with the script trace and the script will exit at this point.

10. The script then sleeps for the defined RESYNCSLEEP period

11. The script then attempts to ping the remote system in order to give an indication if the system

can be seen via the ping command.

12. The CROSS_GROUP_TRANSACTION variable is then checked

a. If not set the script will use the reptool/uvreptool engineering interface to determine if

cross group transactions are present on the system

13. If the CROSS_GROUP_TRANSACTION variable is set or cross group transactions are present on

the system then one single ud/uv_repadmin sync command is sent otherwise a separate sync

command is sent to each group in turn.

a. Ideally, we should be able to sync each group in turn but due to an unresolved product

issue if cross group transactions are present sending single sync commands will result in

a stalled condition in replication.

14. The success or failure of the sync command(s) are then emailed out along with the script trace

and the script exits at this point.

Notes

Starting at version 1.6.4 the script was modified to improve deployment in a multi publisher /

subscriber environment. This required several of the control file names now have the

$UNIREP_REMOTESYS variable as part of the name. You can still change the name but the name

12

must still contain $UNIREP_REMOTESYS as part of the name. The default value of

$UNIREP_REMOTESYS (primary) should also be reviewed for your installation if you wish to test

the script outside of EXCEPTION_ACTION event.

Step 4 and Step 6 are designed to ensure that should multiple suspension events be encountered in

quick succession that the script only runs once during those events. This is based on customer

experience that if multiple copies of the script are running at the same time can result in further

problems in such ‘panic’ situations.

Step 7 ensures that any auto recovery attempt only takes place on a non-disabled subscribing

system. This is again based on customer experience in that allowing both systems to attempt

recovery can also result in further complications and a possible reciprocal firing of the script on the

other system. In terms of disablement If replication is disabled a ‘sync’ command will fail.

13

UniData Example

#!/bin/sh

Replication Status Code that returned by ud_repadmin report command

(c) Rocket Software 2014 - 2019 All Rights Reserved
Disclaimer of Warranties. Rocket Software disclaims to the fullest extent
authorized by law any and all other warranties, whether express or implied,
including, without limitation, any implied warranties
of merchantability or fitness for a particular purpose. Without limitation
of the foregoing, Rocket Software expressly does not warrant that:
(a) the software will meet your requirements [or expectations];
(b) the software or the software content] will be free of bugs, errors,
viruses or other defects;
(c) any results, output, or data provided through or generated by the
software will be accurate, up-to-date, complete or reliable;
(d) the software will be compatible with third party software;
(e) any errors in the software will be corrected.

1.3.1 JDS 25/02/14 First Proposed Customer Release
1.3.2 JDS 20/05/15 Corrected check to be /.uvhome not .uvhome
1.3.5 JDS 03/06/15 Change to all_synced check for disablement
1.4.7 JDS 22/01/16 Small Spelling Correction
1.4.8 JDS 27/01/16 Change to ignore publishing group errors on Recovery
This is for sites with mixed publishing and
subscribing groups
On the same machine
1.5.0 JDS 16/11/16 Add configurable for CGT (Cross Group Transactions)
and also try to detect CGT
If CGT is detected or set Script will sync all groups
at once to
avoid Replication Stall of one by one sync and CGT
1.5.1 JDS 20/12/16 Modify CGT sync call to remove DISTRIB phrase
1.5.2 JDS 22/12/16 Correct version number and correct $filenane typo to
$filename
and deal with a blank file for last run time
1.5.3 JDS 27/03/17 Email notification if it is found that script is
already running
1.5.4 JDS 15/09/17 Move sendmail command to an environment variable to
allow modification in one place
1.5.5 JDS 29/11/17 Ensure running file is removed before exit 2 and
expand pub / sub check
1.5.8 JDS 29/03/18 Added second showud / showuv after suspension testing

14

Added abilty to keep previous outputs of the execption
log file
1.5.9 JDS 29/05/18 Moved Declaration of machinename to avoid a sender
being set to '-t' when script is
already running
1.6.4 JDS 24/04/19 Previously the script had one run control file, this
has now been expanded to include
the remotesystem name to allow for replication
environments that have multiple systems
Added the abiltiy to default the UNIREP_REMOTESYS
variable to test script outside of
a replication exception
1.7.0 JDS 20/06/19 Add 'ping' tests to see remote host is responding

Define Mail receipents and sendmail cmd
export MAILRECS="someone@you.com,someoneelse@you.com"
export SENDMAILCMD="/usr/lib/sendmail"
Check UDTHOME
udthome="$UDTHOME"
if ["$udthome" = ""]
then
 export UDTHOME=/apps/ud
fi
udtbin="$UDTBIN"
if ["$udtbin" = ""]
then
 export UDTBIN=$UDTHOME/bin
fi
Check UNIREP_REMOTESYS
remotesys="$UNIREP_REMOTESYS"
outsidereplication=0
if ["$remotesys" = ""]
then
 outsidereplication=1
 export UNIREP_REMOTESYS=primary
fi
Publishing group Status Codes
export PUB_STOP=1 #/* group is normally stopped */
export PUB_EXIT=2 #/* group has quit abnormally.*/
export PUB_SHUTDOWN=3 #/* group is doing shutdown */
export PUB_RUNNING=4 #/* group is in running mode */
export PUB_DO_RECONFIG=5 #/* group is doing reconfigure */
export PUB_DO_BACKSYNC=6 #/* group is doing backsync */
export PUB_DO_FAILOVER=7 #/* group is doing failover */
Publishing Replication Status Codes
export REP_RUNNING=11 #/* replication is in running mode */
export REP_SUSPENDED=12 #/* replication is in suspension mode */
export REP_SYNCING=13 #/* replication is in syncing mode */
export REP_DO_SUSPEND=14 #/* replication is doing suspend */

15

export REP_DO_SYNC=15 #/* replication is doing sync */
export REP_EXIT=16 #/* replication exit */
export REP_DISABLED=17 #/* replication disabled */
Subscribing Replication/group status codes.
export SUB_STOP=21 #/* group is normally stopped */
export SUB_EXIT=22 #/* group has quit abnormally.*/
export SUB_SHUTDOWN=23 #/* group is doing shutdown */
export SUB_RUNNING=24 #/* replication is in running mode */
export SUB_DO_RECONFIG=25 #/* group is doing reconfigure */
export SUB_DO_SUSPEND=27 #/* replication is suspending */
export SUB_SYNCING=28 #/* replication is doing sync */
export SUB_DO_FAILOVER=29 #/* group is doing failover */
export SUB_RESYNCING=30 #/* group is doing re-syncing */
Script Version
export REP_EXCEP_SCRIPT_VERSION=1.6.4
export CROSS_GROUP_TRANSACTION=0
export debugrequest=0
export versionrequest=0
while getopts ":xv" opt; do
case $opt in
x) debugrequest=1 ;;
v) versionrequest=1 ;;
esac
done
if [$debugrequest = 1]
then
 set -x
fi
if [$versionrequest = 1]
then
 echo "Script Version is :"$REP_EXCEP_SCRIPT_VERSION
 exit 0
fi
Number of minutes to check before running script again
export PUBCHECKMIN=2
export SUBCHECKMIN=2
export DISCHECKMIN=2
Sleep is in seconds not minutes
export RESYNCSLEEP=120
Set number of Result logs to keep
export LOGKEEPCNT=5
Show exception time
export dstring=`date`
export reportfilename="$UDTHOME"/"$UNIREP_REMOTESYS"RepExcept.errlog
export scriptrunningname="$UDTHOME"/"$UNIREP_REMOTESYS"RepExcept.running
export scriptruncountfile="$UDTHOME"/"$UNIREP_REMOTESYS"RepExcept.cnt
export machinename=`uname -a | awk '{print $2}'`
if [-f $scriptrunningname]
then
 echo $scriptrunningname" found script already running - exiting"

16

 echo "Subject: Exception Script is Already Running - New Request Rejected"
| cat - $reportfilename | $SENDMAILCMD -F $machinename -t $MAILRECS
 exit 5
fi
if [-f $scriptruncountfile]
then
 export lastruncount=`head -1 $scriptruncountfile | tail -1`
 lastruncount=`expr $lastruncount + 1`
 if [$lastruncount -gt $LOGKEEPCNT]
 then
 lastruncount=1
 fi
 echo $lastruncount > $scriptruncountfile
 export cpcmd="cp $reportfilename $reportfilename$lastruncount"
 $cpcmd
else
 echo "0" > $scriptruncountfile
fi
echo "Run Started at "$dstring > $scriptrunningname
echo "UniData Replication Exception called at "$dstring > $reportfilename
echo "Script Version is "$REP_EXCEP_SCRIPT_VERSION >> $reportfilename
echo "Run on machine "$machinename >> $reportfilename
if [$outsidereplication = 1]
then
 echo "Script was NOT fired by replicaton " >> $reportfilename
fi
echo "Is this the publisher or subscriber" >> $reportfilename
export cmd="$UDTBIN/ud_repadmin report $UNIREP_REMOTESYS"
echo "Now running:"$cmd >> $reportfilename
$cmd
returncode=$?
echo "returncode=$returncode" >> $reportfilename
export publisher=0
export subscriber=0
export disabled=0
export unexpectedcode=0
if [$returncode -lt 17]
then
 publisher=1
fi
if [$returncode -gt 17]
then
 subscriber=1
fi
if [$returncode -gt 30]
then
 unexpectedcode=1
fi
if [$returncode = "17"]
then

17

 disabled=1
fi
if [$publisher = 1]
then
 echo "System is a publisher" >> $reportfilename
fi
if [$subscriber = 1]
then
 echo "System is a subscriber" >> $reportfilename
fi
if [$disabled = 1]
then
 echo "Replication is Disabled !" >> $reportfilename
fi
if [$unexpectedcode = 1]
then
 echo "Returncode is outside expected Range, so the assumption Machine is a
subscriber may be incorrect, hence will not perform recovery " >>
$reportfilename
fi
Check Last Run Time and avoid running multiple times
export checkfilename="$UDTHOME"/"$UNIREP_REMOTESYS"RepExcept.runtime
export ddatetime=`date +"%Y %j %H %M"`
ddatetime=`echo $ddatetime | sed 's/ //g'`
export run_check=0
if [! -f $checkfilename]
then
 # Put the current date time into the log file
 echo $ddatetime > $checkfilename
 run_check=1
else
 ldatetime=`cat $checkfilename`
 if ["$ldatetime" = ""]
 then
 echo "Empty Last Run File Found" >> $reportfilename
 echo $ddatetime > $checkfilename
 run_check=1
 else
 if [$publisher = 1]
 then
 tdatetime=`expr $ldatetime + $PUBCHECKMIN`
 fi
 if [$subscriber = 1]
 then
 tdatetime=`expr $ldatetime + $SUBCHECKMIN`
 fi
 if [$disabled = 1]
 then
 tdatetime=`expr $ldatetime + $DISCHECKMIN`
 fi

18

 echo "Last run at "$ldatetime >> $reportfilename
 echo "Current "$ddatetime >> $reportfilename
 echo "Next "$tdatetime >> $reportfilename
 if [$ddatetime -ge $tdatetime]
 then
 run_check=1
 echo $ddatetime > $checkfilename
 fi
 fi
fi
echo "Run Check "$run_check >> $reportfilename
if [$run_check = 0]
then
 echo "Failed Next Time to Run Check" >> $reportfilename
 rm $scriptrunningname
 exit
fi
Show environment variables passed from replication system
echo "UNIREP_REMOTESYS="$UNIREP_REMOTESYS >> $reportfilename
echo "UNIREP_REPTYPE="$UNIREP_REPTYPE >> $reportfilename
echo "UNIREP_GRPNAME="$UNIREP_GRPNAME >> $reportfilename
echo "UNIREP_ERRCODE="$UNIREP_ERRCODE >> $reportfilename
echo "UNIREP_ERRSTRING="$UNIREP_ERRSTRING >> $reportfilename
echo "UDTBIN=$UDTBIN" >> $reportfilename
echo "Return Error Codes" >> $reportfilename
echo "NO ERROR=0" >> $reportfilename
echo "PUB_STOP="$PUB_STOP >> $reportfilename
echo "PUB_EXIT="$PUB_EXIT >> $reportfilename
echo "PUB_SHUTDOWN="$PUB_SHUTDOWN >> $reportfilename
echo "PUB_RUNNING="$PUB_RUNNING >> $reportfilename
echo "PUB_DO_RECONFIG="$PUB_DO_RECONFIG >> $reportfilename
echo "PUB_DO_BACKSYNC ="$PUB_DO_BACKSYNC >> $reportfilename
echo "PUB_DO_FAILOVER="$PUB_DO_FAILOVER >> $reportfilename
echo "REP_RUNNING="$REP_RUNNING >> $reportfilename
echo "REP_SUSPENDED="$REP_SUSPENDED >> $reportfilename
echo "REP_SYNCING="$REP_SYNCING >> $reportfilename
echo "REP_DO_SUSPEND="$REP_DO_SUSPEND >> $reportfilename
echo "REP_DO_SYNC="$REP_DO_SYNC >> $reportfilename
echo "REP_EXIT="$REP_EXIT >> $reportfilename
echo "REP_DISABLED="$REP_DISABLED >> $reportfilename
echo "SUB_STOP="$SUB_STOP >> $reportfilename
echo "SUB_EXIT="$SUB_EXIT >> $reportfilename
echo "SUB_SHUTDOWN="$SUB_SHUTDOWN >> $reportfilename
echo "SUB_RUNNING="$SUB_RUNNING >> $reportfilename
echo "SUB_DO_RECONFIG="$SUB_DO_RECONFIG >> $reportfilename
echo "SUB_DO_SUSPEND="$SUB_DO_SUSPEND >> $reportfilename
echo "SUB_SYNCING="$SUB_SYNCING >> $reportfilename
echo "SUB_DO_FAILOVER="$SUB_DO_FAILOVER >> $reportfilename
echo "SUB_RESYNCING="$SUB_RESYNCING >> $reportfilename
Run ud_repadmin report command

19

export cmd="$UDTBIN/ud_repadmin report -detail $UNIREP_REMOTESYS"
echo "Now running:"$cmd >> $reportfilename
$cmd >> $reportfilename
echo "showud" >> $reportfilename
$UDTBIN/showud >> $reportfilename
if [$publisher = 1]
then
 echo "System Reported it was a publisher no need to try sync" >>
$reportfilename
fi
if [$disabled = 1]
then
 echo "System Reported Replication was disabled no need to try sync" >>
$reportfilename
fi
if [$unexpectedcode = 1]
then
 echo "Unexpected returncode was fouund so sync will not be attempted" >>
$reportfilename
fi
echo "Please See "$reportfilename" for more information" >> $reportfilename
SendMail of Failure
echo "Attempting First SendMail" >> $reportfilename
export subjecthelp="Remote System is $UNIREP_REMOTESYS"
if [$outsidereplication = 1]
then
 export subjecthelp="Remote System is $UNIREP_REMOTESYS Not Running from
EXCEPTION_ACTION"
fi
if [$disabled = 1]
then
 echo "Subject: REPLICATION DISABLED $subjecthelp" | cat - $reportfilename
| $SENDMAILCMD -F $machinename -t $MAILRECS
 echo "Replication Disabled Email Sent" >> $reportfilename
else
 echo "Subject: REPLICATION SUSPENDED $subjecthelp" | cat - $reportfilename
| $SENDMAILCMD -F $machinename -t $MAILRECS
 echo "Replication Suspended Email Sent" >> $reportfilename
fi
if [$publisher = 1]
then
 rm $scriptrunningname
 exit 0
fi
if [$disabled = 1]
then
 rm $scriptrunningname
 exit 0
fi
if [$unexpectedcode = 1]

20

then
 rm $scriptrunningname
 exit 0
fi
Check all groups are suspended before proceeding
Not Needed for Publisher or if Replication is disabled
export all_suspended=0
export try=0
while [$all_suspended = 0 -a $try -lt 10]
do
 sleep 5
 all_suspended=1
 menu_str="2\n0\n0\n0\n\n\n"
 for grpname in `printf $menu_str | $UDTBIN/reptool | grep "^Group" | awk
'{print $3}'`; do
 if [$all_suspended]
 then
 # Run ud_repadmin report command
 export cmd="$UDTBIN/ud_repadmin REPORT GROUP $grpname DISTRIB
$UNIREP_REMOTESYS"
 echo "Try Counter is "$try >> $reportfilename
 echo "Now running:"$cmd >> $reportfilename
 $cmd
 returncode=$?
 echo "returncode=$returncode" >> $reportfilename
 if [$returncode -gt 30]
 then
 # Report command failed
 echo "Report command failed, exit." >> $reportfilename
 rm $scriptrunningname
 exit 2
 elif [$returncode = $REP_SUSPENDED -o $returncode = $SUB_STOP -o
$returncode = $SUB_EXIT]
 then
 echo "Group $grpname is suspended." >> $ filename
 else
 all_suspended=0
 fi
 fi
 done
 try=`expr $try + 1`
done
echo "showud" >> $reportfilename
$UDTBIN/showud >> $reportfilename
if [$all_suspended = 0]
then
 echo "Number of Try's Exceeded to Confirm All Groups Suspended" >>
$reportfilename

21

 echo "Subject: UNABLE TO CONFIRM SUSPENSION OF ALL GROUPS $subjecthelp (NO
SYNC WILL BE ATTEMPTED)" | cat - $reportfilename | $SENDMAILCMD -F
$machinename -t $MAILRECS
 echo "Unable to confirm suspension email sent" >> $reportfilename
 rm $scriptrunningname
 exit 3
fi
echo "Subject: CONFIRMED SUSPENSION OF ALL GROUPS $subjecthelp - Resync
Attempt in 2 Minutes" | cat - $reportfilename | $SENDMAILCMD -F $machinename
-t $MAILRECS
echo "Confirmed suspension email sent" >> $reportfilename
Try automatic resync and resume - only run on subscriber
echo "Sleeping for $RESYNCSLEEP" >> $reportfilename
sleep $RESYNCSLEEP
echo "Woke up from Sleep" >> $reportfilename
Ping Remote System to get response
echo "Attempting to locate $UNIREP_REMOTESYS in repsys to ping" >>
$reportfilename
i=0
menu_str="1\n2\n0\n0\n\n\n"
for oline in `printf $menu_str | $UDTBIN/reptool | grep "^Host Name=" | awk
'{print $2}'` ; do
 second=$(echo $oline | cut -d'=' -f2)
 hostnames[i]=$second
 ((i=i+1))
done
i=0
menu_str="1\n2\n0\n0\n\n\n"
for oline in `printf $menu_str | $UDTBIN/reptool | grep "^System" | awk
'{print $1}'` ; do
 second=$(echo $oline | cut -d'=' -f2)
 systemnames[i]=$second
 if [$second = $UNIREP_REMOTESYS]
 then
 hname=${hostnames[i]}
 export cmd="ping -c4 -w10 $hname"
 echo "Now running:"$cmd >> $reportfilename
 $cmd >> $reportfilename
 fi
 ((i=i+1))
done
echo "Cross Group Transaction Currently set to $CROSS_GROUP_TRANSACTION" >>
$reportfilename
if [$CROSS_GROUP_TRANSACTION = 0]
then
 echo "Testing for Transactions" >> $reportfilename
 menu_str="6\n1\n0\n0\n\n\n"
 trans_cnt=`printf $menu_str | $UDTBIN/reptool | grep "^TCR Created:" | awk
'{print $3}'`
 if [$trans_cnt = 0]

22

 then
 echo "No Transactions Seen Leaving CGT Unset" >> $reportfilename
 else
 echo "Transactions Found so setting CGT" >> $reportfilename
 CROSS_GROUP_TRANSACTION=1
 fi
fi
export all_synced=1
export group_syncing=1
if [$CROSS_GROUP_TRANSACTION = 0]
then
menu_str="2\n0\n0\n0\n\n\n"
for grp_name in `printf $menu_str | $UDTBIN/reptool | grep "^Group" | awk
'{print $3}'`; do
 cmd="$UDTBIN/ud_repadmin sync -wait -verbose GROUP $grp_name DISTRIB
$UNIREP_REMOTESYS"
 echo "Now running:"$cmd >> $reportfilename
 $cmd >> $reportfilename
 returncode=$?
 echo "Return code=$returncode" >> $reportfilename
 if [$returncode = 0]
 then
 echo "Group Sync Worked" >> $reportfilename
 else
 export cmd="$UDTBIN/ud_repadmin report GROUP $grp_name"
 echo "Now running:"$cmd >> $reportfilename
 $cmd
 returncode=$?
 echo "returncode=$returncode" >> $reportfilename
 if [$returncode = $REP_SYNCING -o $returncode = $REP_DO_SYNC -o
$returncode = $REP_RUNNING -o $returncode = $SUB_RUNNING -o $returncode =
$SUB_SYNCING -o $returncode = $SUB_RESYNCING]
 then
 group_syncing=1
 else
 group_syncing=0
 fi
 if [$returncode -lt 17]
 then
 group_syncing=1
 echo "group appears to be a publishing group so and sync
failures are ignored"
 fi
 echo "group_syncing=$group_syncing" >> $reportfilename
 if [$group_syncing = 0]
 then
 echo "Group Sync Failed" >> $reportfilename
 all_synced=0
 fi
 fi

23

 sleep 1
done
else
 cmd="$UDTBIN/ud_repadmin sync -wait -verbose $UNIREP_REMOTESYS"
 echo "Now running:"$cmd >> $reportfilename
 $cmd >> $reportfilename
 returncode=$?
 echo "Return code=$returncode" >> $reportfilename
 if [$returncode = 0]
 then
 echo "Whole Sync Worked" >> $reportfilename
 else
 export cmd="$UDTBIN/ud_repadmin report"
 echo "Now running:"$cmd >> $reportfilename
 $cmd
 returncode=$?
 echo "returncode=$returncode" >> $reportfilename
 if [$returncode = $REP_SYNCING -o $returncode = $REP_DO_SYNC -o
$returncode = $REP_RUNNING -o $returncode = $SUB_RUNNING -o $returncode =
$SUB_SYNCING -o $returncode = $SUB_RESYNCING]
 then
 group_syncing=1
 else
 group_syncing=0
 fi
 if [$returncode -lt 17]
 then
 group_syncing=1
 echo "group appears to be a publishing group so and sync
failures are ignored"
 fi
 echo "group_syncing=$group_syncing" >> $reportfilename
 if [$group_syncing = 0]
 then
 echo "Whole Sync Failed" >> $reportfilename
 all_synced=0
 fi
 fi
 sleep 1
fi
echo "all_synced flag = "$all_synced >> $reportfilename
if [$all_synced = 1]
then
 echo "Subject: Sync Commmands Worked $subjecthelp - Please Check Systems" |
cat - $reportfilename | $SENDMAILCMD -F $machinename -t $MAILRECS
else
 echo "Subject: SYNC COMMANDS FAILED $subjecthelp - PLEASE CHECK SYSTEMS" |
cat - $reportfilename | $SENDMAILCMD -F $machinename -t $MAILRECS
 rm $scriptrunningname
 exit 4

24

fi
rm $scriptrunningname
exit 0

25

UniVerse Example

#!/bin/sh

Replication Status Code that returned by uv_repadmin report command

(c) Rocket Software 2014 - 2019 All Rights Reserved

Disclaimer of Warranties. Rocket Software disclaims to the fullest extent

authorized by law any and all other warranties, whether express or implied,

including, without limitation, any implied warranties

of merchantability or fitness for a particular purpose. Without limitation

of the foregoing, Rocket Software expressly does not warrant that:

(a) the software will meet your requirements [or expectations];

(b) the software or the software content] will be free of bugs, errors,

viruses or other defects;

(c) any results, output, or data provided through or generated by the

software will be accurate, up-to-date, complete or reliable;

(d) the software will be compatible with third party software;

(e) any errors in the software will be corrected.

1.3.1 JDS 25/02/14 First Proposed Customer Release

1.3.2 JDS 20/05/15 Corrected check to be /.uvhome not .uvhome

1.3.5 JDS 03/06/15 Change to all_synced check for disablement

1.4.7 JDS 16/01/16 Spelling Change and Corrected Check for Sync Failure

Subject in Email

1.4.8 JDS 27/01/16 Change to ignore publishing group errors on Recovery

This is for sites with mixed publishing and

subscribing groups

On the same machine

1.5.0 JDS 16/11/16 Add configurable for CGT (Cross Group Transactions)

and also try to detect CGT

If CGT is detected or set Script will sync all groups

at once to

avoid Replication Stall of one by one sync and CGT

1.5.1 JDS 20/12/16 Modify CGT sync call to remove DISTRIB phrase

1.5.2 JDS 22/12/16 Correct Version number and correct $filenane typo to

$filename

and deal with a blank file for last run time

1.5.3 JDS 27/03/17 Email notification if it is found that script is

already running

26

1.5.4 JDS 15/09/17 Move sendmail command to an environment variable to

allow modification in one place

1.5.5 JDS 29/11/17 Ensure running file is removed before exit 2 and

expand pub / sub check

1.5.8 JDS 29/03/18 Added second showud / showuv after suspension testing

Added abilty to keep previous outputs of the execption

log file

1.5.9 JDS 29/05/18 Moved Declaration of machinename to avoid a sender

being set to '-t' when script is

already running

1.6.4 JDS 24/04/19 Previously the script had one run control file, this

has now been expanded to include

the remotesystem name to allow for replication

environments that have multiple systems

Added the abiltiy to default the UNIREP_REMOTESYS

variable to test script outside of

a replication exception

1.7.0 JDS 20/06/19 Add 'ping' tests to see remote host is responding

Define Mail receipents and sendmail cmd

export MAILRECS="someone@you.com,someoneelse@you.com"

export SENDMAILCMD="/usr/lib/sendmail"

Check UVHOME

uvhome="$UVHOME"

if ["$uvhome" = ""]

then

 export UVHOME=`cat /.uvhome`

fi

uvbin="$UVBIN"

if ["$uvbin" = ""]

then

 export UVBIN=$UVHOME/bin

fi

Check UNIREP_REMOTESYS

remotesys="$UNIREP_REMOTESYS"

outsidereplication=0

if ["$remotesys" = ""]

then

 outsidereplication=1

 export UNIREP_REMOTESYS=primary

fi

Publishing group Status Codes

export PUB_STOP=1 #/* group is normally stopped */

27

export PUB_EXIT=2 #/* group has quit abnormally.*/

export PUB_SHUTDOWN=3 #/* group is doing shutdown */

export PUB_RUNNING=4 #/* group is in running mode */

export PUB_DO_RECONFIG=5 #/* group is doing reconfigure */

export PUB_DO_BACKSYNC=6 #/* group is doing backsync */

export PUB_DO_FAILOVER=7 #/* group is doing failover */

Publishing Replication Status Codes

export REP_RUNNING=11 #/* replication is in running mode */

export REP_SUSPENDED=12 #/* replication is in suspension mode */

export REP_SYNCING=13 #/* replication is in syncing mode */

export REP_DO_SUSPEND=14 #/* replication is doing suspend */

export REP_DO_SYNC=15 #/* replication is doing sync */

export REP_EXIT=16 #/* replication exit */

export REP_DISABLED=17 #/* replication disabled */

Subscribing Replication/group status codes.

export SUB_STOP=21 #/* group is normally stopped */

export SUB_EXIT=22 #/* group has quit abnormally.*/

export SUB_SHUTDOWN=23 #/* group is doing shutdown */

export SUB_RUNNING=24 #/* replication is in running mode */

export SUB_DO_RECONFIG=25 #/* group is doing reconfigure */

export SUB_DO_SUSPEND=27 #/* replication is suspending */

export SUB_SYNCING=28 #/* replication is doing sync */

export SUB_DO_FAILOVER=29 #/* group is doing failover */

export SUB_RESYNCING=30 #/* group is doing re-syncing */

Script Version

export REP_EXCEP_SCRIPT_VERSION=1.6.4

export CROSS_GROUP_TRANSACTION=0

export debugrequest=0

export versionrequest=0

while getopts ":xv" opt; do

case $opt in

x) debugrequest=1 ;;

v) versionrequest=1 ;;

esac

done

if [$debugrequest = 1]

then

 set -x

fi

if [$versionrequest = 1]

then

 echo "Script Version is :"$REP_EXCEP_SCRIPT_VERSION

 exit 0

28

fi

Number of minutes to check before running script again

export PUBCHECKMIN=2

export SUBCHECKMIN=2

export DISCHECKMIN=2

Sleep is in seconds not minutes

export RESYNCSLEEP=120

Set number of Result logs to keep

export LOGKEEPCNT=5

Show exception time

export dstring=`date`

export reportfilename="$UVHOME"/"$UNIREP_REMOTESYS"RepExcept.errlog

export scriptrunningname="$UVHOME"/"$UNIREP_REMOTESYS"RepExcept.running

export scriptruncountfile="$UVHOME"/"$UNIREP_REMOTESYS"RepExcept.cnt

export machinename=`uname -a | awk '{print $2}'`

if [-f $scriptrunningname]

then

 echo $scriptrunningname" found script already running - exiting"

 echo "Subject: Exception Script is Already Running - New Request Rejected"

| cat - $reportfilename | $SENDMAILCMD -F $machinename -t $MAILRECS

 exit 5

fi

if [-f $scriptruncountfile]

then

 export lastruncount=`head -1 $scriptruncountfile | tail -1`

 lastruncount=`expr $lastruncount + 1`

 if [$lastruncount -gt $LOGKEEPCNT]

 then

 lastruncount=1

 fi

 echo $lastruncount > $scriptruncountfile

 export cpcmd="cp $reportfilename $reportfilename$lastruncount"

 $cpcmd

else

 echo "0" > $scriptruncountfile

fi

echo "Run Started at "$dstring > $scriptrunningname

echo "UniVerse Replication Exception called at "$dstring > $reportfilename

echo "Script Version is "$REP_EXCEP_SCRIPT_VERSION >> $reportfilename

echo "Run on machine "$machinename >> $reportfilename

if [$outsidereplication = 1]

then

 echo "Script was NOT fired by replicaton " >> $reportfilename

29

fi

echo "Is this the publisher or subscriber" >> $reportfilename

export cmd="$UVBIN/uv_repadmin report $UNIREP_REMOTESYS"

echo "Now running:"$cmd >> $reportfilename

$cmd

returncode=$?

echo "returncode=$returncode" >> $reportfilename

export publisher=0

export subscriber=0

export disabled=0

export unexpectedcode=0

if [$returncode -lt 17]

then

 publisher=1

fi

if [$returncode -gt 17]

then

 subscriber=1

fi

if [$returncode -gt 30]

then

 unexpectedcode=1

fi

if [$returncode = "17"]

then

 disabled=1

fi

if [$publisher = 1]

then

 echo "System is a publisher" >> $reportfilename

fi

if [$subscriber = 1]

then

 echo "System is a subscriber" >> $reportfilename

fi

if [$disabled = 1]

then

 echo "Replication is Disabled !" >> $reportfilename

fi

if [$unexpectedcode = 1]

then

30

 echo "Returncode is outside expected Range, so the assumption Machine is a

subscriber may be incorrect, hence will not perform recovery " >>

$reportfilename

fi

Check Last Run Time and avoid running multiple times

export checkfilename="$UVHOME"/"$UNIREP_REMOTESYS"RepExcept.runtime

export ddatetime=`date +"%Y %j %H %M"`

ddatetime=`echo $ddatetime | sed 's/ //g'`

export run_check=0

if [! -f $checkfilename]

then

 # Put the current date time into the log file

 echo $ddatetime > $checkfilename

 run_check=1

else

 ldatetime=`cat $checkfilename`

 if ["$ldatetime" = ""]

 then

 echo "Empty Last Run File Found" >> $reportfilename

 echo $ddatetime > $checkfilename

 run_check=1

 else

 if [$publisher = 1]

 then

 tdatetime=`expr $ldatetime + $PUBCHECKMIN`

 fi

 if [$subscriber = 1]

 then

 tdatetime=`expr $ldatetime + $SUBCHECKMIN`

 fi

 if [$disabled = 1]

 then

 tdatetime=`expr $ldatetime + $DISCHECKMIN`

 fi

 echo "Last run at "$ldatetime >> $reportfilename

 echo "Current "$ddatetime >> $reportfilename

 echo "Next "$tdatetime >> $reportfilename

 if [$ddatetime -ge $tdatetime]

 then

 run_check=1

 echo $ddatetime > $checkfilename

 fi

 fi

31

fi

echo "Run Check "$run_check >> $reportfilename

if [$run_check = 0]

then

 echo "Failed Next Time to Run Check" >> $reportfilename

 rm $scriptrunningname

 exit

fi

Show environment variables passed from replication system

echo "UNIREP_REMOTESYS="$UNIREP_REMOTESYS >> $reportfilename

echo "UNIREP_REPTYPE="$UNIREP_REPTYPE >> $reportfilename

echo "UNIREP_GRPNAME="$UNIREP_GRPNAME >> $reportfilename

echo "UNIREP_ERRCODE="$UNIREP_ERRCODE >> $reportfilename

echo "UNIREP_ERRSTRING="$UNIREP_ERRSTRING >> $reportfilename

echo "UVBIN=$UVBIN" >> $reportfilename

echo "Return Error Codes" >> $reportfilename

echo "NO ERROR=0" >> $reportfilename

echo "PUB_STOP="$PUB_STOP >> $reportfilename

echo "PUB_EXIT="$PUB_EXIT >> $reportfilename

echo "PUB_SHUTDOWN="$PUB_SHUTDOWN >> $reportfilename

echo "PUB_RUNNING="$PUB_RUNNING >> $reportfilename

echo "PUB_DO_RECONFIG="$PUB_DO_RECONFIG >> $reportfilename

echo "PUB_DO_BACKSYNC ="$PUB_DO_BACKSYNC >> $reportfilename

echo "PUB_DO_FAILOVER="$PUB_DO_FAILOVER >> $reportfilename

echo "REP_RUNNING="$REP_RUNNING >> $reportfilename

echo "REP_SUSPENDED="$REP_SUSPENDED >> $reportfilename

echo "REP_SYNCING="$REP_SYNCING >> $reportfilename

echo "REP_DO_SUSPEND="$REP_DO_SUSPEND >> $reportfilename

echo "REP_DO_SYNC="$REP_DO_SYNC >> $reportfilename

echo "REP_EXIT="$REP_EXIT >> $reportfilename

echo "REP_DISABLED="$REP_DISABLED >> $reportfilename

echo "SUB_STOP="$SUB_STOP >> $reportfilename

echo "SUB_EXIT="$SUB_EXIT >> $reportfilename

echo "SUB_SHUTDOWN="$SUB_SHUTDOWN >> $reportfilename

echo "SUB_RUNNING="$SUB_RUNNING >> $reportfilename

echo "SUB_DO_RECONFIG="$SUB_DO_RECONFIG >> $reportfilename

echo "SUB_DO_SUSPEND="$SUB_DO_SUSPEND >> $reportfilename

echo "SUB_SYNCING="$SUB_SYNCING >> $reportfilename

echo "SUB_DO_FAILOVER="$SUB_DO_FAILOVER >> $reportfilename

echo "SUB_RESYNCING="$SUB_RESYNCING >> $reportfilename

Run uv_repadmin report command

export cmd="$UVBIN/uv_repadmin report -detail $UNIREP_REMOTESYS"

echo "Now running:"$cmd >> $reportfilename

32

$cmd >> $reportfilename

echo "showuv" >> $reportfilename

$UVBIN/showuv >> $reportfilename

if [$publisher = 1]

then

 echo "System Reported it was a publisher no need to try sync" >>

$reportfilename

fi

if [$disabled = 1]

then

 echo "System Reported Replication was disabled no need to try sync" >>

$reportfilename

fi

if [$unexpectedcode = 1]

then

 echo "Unexpected returncode was fouund so sync will not be attempted" >>

$reportfilename

fi

echo "Please See "$reportfilename" for more information" >> $reportfilename

SendMail of Failure

echo "Attempting First SendMail" >> $reportfilename

export subjecthelp="Remote System is $UNIREP_REMOTESYS"

if [$outsidereplication = 1]

then

 export subjecthelp="Remote System is $UNIREP_REMOTESYS Not Running from

EXCEPTION_ACTION"

fi

if [$disabled = 1]

then

 echo "Subject: REPLICATION DISABLED $subjecthelp" | cat - $reportfilename

| $SENDMAILCMD -F $machinename -t $MAILRECS

 echo "Replication Disabled Email Sent" >> $reportfilename

else

 echo "Subject: REPLICATION SUSPENDED $subjecthelp" | cat - $reportfilename

| $SENDMAILCMD -F $machinename -t $MAILRECS

 echo "Replication Suspended Email Sent" >> $reportfilename

fi

if [$publisher = 1]

then

 rm $scriptrunningname

 exit 0

fi

if [$disabled = 1]

33

then

 rm $scriptrunningname

 exit 0

fi

if [$unexpectedcode = 1]

then

 rm $scriptrunningname

 exit 0

fi

Check all groups are suspended before proceeding

Not Needed for Publisher or if Replication is disabled

export all_suspended=0

export try=0

while [$all_suspended = 0 -a $try -lt 10]

do

 sleep 5

 all_suspended=1

 menu_str="2\n0\n0\n0\n\n\n"

 for grpname in `printf $menu_str | $UVBIN/uvreptool | grep "^Group" | awk

'{print $3}'`; do

 if [$all_suspended]

 then

 # Run uv_repadmin report command

 export cmd="$UVBIN/uv_repadmin REPORT GROUP $grpname DISTRIB

$UNIREP_REMOTESYS"

 echo "Try Counter is "$try >> $reportfilename

 echo "Now running:"$cmd >> $reportfilename

 $cmd

 returncode=$?

 echo "returncode=$returncode" >> $reportfilename

 if [$returncode -gt 30]

 then

 # Report command failed

 echo "Report command failed, exit." >> $reportfilename

 rm $scriptrunningname

 exit 2

 elif [$returncode = $REP_SUSPENDED -o $returncode = $SUB_STOP -o

$returncode = $SUB_EXIT]

 then

 echo "Group $grpname is suspended." >> $ filename

 else

 all_suspended=0

 fi

34

 fi

 done

 try=`expr $try + 1`

done

echo "showuv" >> $reportfilename

$UVBIN/showuv >> $reportfilename

if [$all_suspended = 0]

then

 echo "Number of Try's Exceeded to Confirm All Groups Suspended" >>

$reportfilename

 echo "Subject: UNABLE TO CONFIRM SUSPENSION OF ALL GROUPS $subjecthelp (NO

SYNC WILL BE ATTEMPTED)" | cat - $reportfilename | $SENDMAILCMD -F

$machinename -t $MAILRECS

 echo "Unable to confirm suspension email sent" >> $reportfilename

 rm $scriptrunningname

 exit 3

fi

echo "Subject: CONFIRMED SUSPENSION OF ALL GROUPS $subjecthelp - Resync

Attempt in 2 Minutes" | cat - $reportfilename | $SENDMAILCMD -F $machinename

-t $MAILRECS

echo "Confirmation suspension email sent" >> $reportfilename

Try automatic resync and resume - only run on subscriber

echo "Sleeping for $RESYNCSLEEP" >> $reportfilename

sleep $RESYNCSLEEP

echo "Woke up from Sleep" >> $reportfilename

Ping Remote System to get response

echo "Attempting to locate $UNIREP_REMOTESYS in repsys to ping" >>

$reportfilename

i=0

menu_str="1\n2\n0\n0\n\n\n"

for oline in `printf $menu_str | $UVBIN/uvreptool | grep "^Host Name=" | awk

'{print $2}'` ; do

 second=$(echo $oline | cut -d'=' -f2)

 hostnames[i]=$second

 ((i=i+1))

done

i=0

menu_str="1\n2\n0\n0\n\n\n"

for oline in `printf $menu_str | $UVBIN/uvreptool | grep "^System" | awk

'{print $1}'` ; do

 second=$(echo $oline | cut -d'=' -f2)

 systemnames[i]=$second

 if [$second = $UNIREP_REMOTESYS]

35

 then

 hname=${hostnames[i]}

 export cmd="ping -c4 -w10 $hname"

 echo "Now running:"$cmd >> $reportfilename

 $cmd >> $reportfilename

 fi

 ((i=i+1))

done

echo "Cross Group Transaction Currently set to $CROSS_GROUP_TRANSACTION" >>

$reportfilename

if [$CROSS_GROUP_TRANSACTION = 0]

then

 echo "Testing for Transactions" >> $reportfilename

 menu_str="6\n1\n0\n0\n\n\n"

 trans_cnt=`printf $menu_str | $UVBIN/uvreptool | grep "^TCR Created:" | awk

'{print $3}'`

 if [$trans_cnt = 0]

 then

 echo "No Transactions Seen Leaving CGT Unset" >> $reportfilename

 else

 echo "Transactions Found so setting CGT" >> $reportfilename

 CROSS_GROUP_TRANSACTION=1

 fi

fi

export all_synced=1

export group_syncing=1

if [$CROSS_GROUP_TRANSACTION = 0]

then

menu_str="2\n0\n0\n0\n\n\n"

for grp_name in `printf $menu_str | $UVBIN/uvreptool | grep "^Group" | awk

'{print $3}'`; do

 cmd="$UVBIN/uv_repadmin sync -wait -verbose GROUP $grp_name DISTRIB

$UNIREP_REMOTESYS"

 echo "Now running:"$cmd >> $reportfilename

 $cmd >> $reportfilename

 returncode=$?

 echo "Return code=$returncode" >> $reportfilename

 if [$returncode = 0]

 then

 echo "Group Sync Worked" >> $reportfilename

 else

 export cmd="$UVBIN/uv_repadmin report GROUP $grp_name"

 echo "Now running:"$cmd >> $reportfilename

36

 $cmd

 returncode=$?

 echo "returncode=$returncode" >> $reportfilename

 if [$returncode = $REP_SYNCING -o $returncode = $REP_DO_SYNC -o

$returncode = $REP_RUNNING -o $returncode = $SUB_RUNNING -o $returncode =

$SUB_SYNCING -o $returncode = $SUB_RESYNCING]

 then

 group_syncing=1

 else

 group_syncing=0

 fi

 if [$returncode -lt 17]

 then

 group_syncing=1

 echo "group appears to be a publishing group so and sync

failures are ignored"

 fi

 echo "group_syncing=$group_syncing" >> $reportfilename

 if [$group_syncing = 0]

 then

 echo "Group Sync Failed" >> $reportfilename

 all_synced=0

 fi

 fi

 sleep 1

done

else

 cmd="$UVBIN/uv_repadmin sync -wait -verbose $UNIREP_REMOTESYS"

 echo "Now running:"$cmd >> $reportfilename

 $cmd >> $reportfilename

 returncode=$?

 echo "Return code=$returncode" >> $reportfilename

 if [$returncode = 0]

 then

 echo "Whole Sync Worked" >> $reportfilename

 else

 export cmd="$UVBIN/uv_repadmin report"

 echo "Now running:"$cmd >> $reportfilename

 $cmd

 returncode=$?

 echo "returncode=$returncode" >> $reportfilename

37

 if [$returncode = $REP_SYNCING -o $returncode = $REP_DO_SYNC -o

$returncode = $REP_RUNNING -o $returncode = $SUB_RUNNING -o $returncode =

$SUB_SYNCING -o $returncode = $SUB_RESYNCING]

 then

 group_syncing=1

 else

 group_syncing=0

 fi

 if [$returncode -lt 17]

 then

 group_syncing=1

 echo "group appears to be a publishing group so and sync

failures are ignored"

 fi

 echo "group_syncing=$group_syncing" >> $reportfilename

 if [$group_syncing = 0]

 then

 echo "Whole Sync Failed" >> $reportfilename

 all_synced=0

 fi

 fi

 sleep 1

fi

echo "all_synced flag = "$all_synced >> $reportfilename

if [$all_synced = 1]

then

 echo "Subject: Sync Commmands Worked $subjecthelp - Please Check Systems" |

cat - $reportfilename | $SENDMAILCMD -F $machinename -t $MAILRECS

else

 echo "Subject: SYNC COMMANDS FAILED $subjecthelp - PLEASE CHECK SYSTEMS" |

cat - $reportfilename | $SENDMAILCMD -F $machinename -t $MAILRECS

 rm $scriptrunningname

 exit 4

fi

rm $scriptrunningname

exit 0

38

Windows Exception Script

To implement the same functionality into the Windows version of the exception script that was

provided in the UNIX version the script is implemented as a Windows Powershell Script.

A minimum version of PowerShell required to run the script is 5.0

To run the program from a bat file as required in U2 Replication you need a bat file to allow

execution of the powershell, our example is as follows

@ECHO OFF
powershell -ExecutionPolicy ByPass -File C:\u2\ud\RepWinExcep.ps1 -
windowstyle hidden

Testing the Windows Exception Script

The script has a ‘-v’ option to display the version of the script along with some other key

information.

C:\u2\ud>powershell -ExecutionPolicy ByPass -File C:\u2\ud\RepWinExcep.ps1 -v
UniData Home C:\u2\ud
UniData Bin C:\u2\ud\bin
UniData Version 8.2
Machine Name UK-L-JS03
Script Version 1.6.3

The script also has provision ‘-d’ option for debugging to allow a test run of the script outside of the

replication environment but does require the DebugRemoteSys variable to be set correctly.

C:\u2\ud>powershell -ExecutionPolicy ByPass -File C:\u2\ud\RepWinExcep.ps1 -d
Exception Action Powershell - Reached Normal End of Exception Action
Powershell

Exception Script Variables

Variables Changeable Usage / Description
EMailFrom Y The email address notifications will be sent

from
EMailTo Y Who to send any email notifications to
SMTPServer Y The name of the SMTP mail server to send

notifications from

39

SMTPPort Y The port of the SMTP mail server to connect to
SMTPSSL Y Boolean flag to determine if SMTP server

requires SSL verification
SMTPUserName Y User Name on the SMTP server
SMTPPassword Y Password for the User Name above
DebugRemoteSys Y The name of the remote SYSTEM as described

in the repsys file, so for a subscriber this will be
the SYSTEM name of the publisher

UDTHOME / UVHOME N Pulled from the Windows Registry Keys
UDTBIN/UVBIN N Pulled from the Windows Registry Keys
U2VERSION N Pulled from the Windows Registry Keys
PUB_STOP
PUB_EXIT
PUB_SHUTDOWN PUB_RUNNIG
PUB_DO_RECONFIG
PUB_DO_BACKSYNC
PUB_DO_FAILOVER
REP_RUNNING
REP_SUSPENDED
REP_SYNCING
REP_DO_SYNC
REP_EXIT
REP_DISABLED
SUB_STOP
SUB_EXIT
SUB_SHUTDOWN
SUB_RUNNING
SUB_DO_RECONFIG
SUB_SYNCING
SUB_DO_FAILOVER
SUB_RESYNCING

N Hardcoded to match the return codes
produced from the ud/uv_repadmin report
command. The script uses these to determine
the status of replication.

REP_EXCEP_SCRIPT_VERSION Y Used to mark version of scripts
CROSS_GROUP_TRANSACTION Y This defaults to 0 and when set to 0 will check

to see if Cross Group Transactions are active on
the machine. If you set this to 1 it means the
script will always assume Cross Group
Transactions are present and will avoid the
overhead of checking. It is recommended you
set to this to 1 if you know your installation
uses Cross Group Transactions

PUBCHECKMIN
SUBCHECKMIN
DISCHECKMIN

Y These values default to 2 and are used to
ensure that once the script has completed the
script will not be run for another 2 minutes
even if requested to. This is to avoid the script
being fired off in repeated succession.

reportfilename Y Defines the location that the trace file from the
script is placed (This must include the
$UNIREP_REMOTESYS as part of the name)

40

scriptrunningname Y Defines the name of the control file that the
script uses to ensure that only one instance of
the script can be running at any one time (This
must include the $UNIREP_REMOTESYS as part
of the name)

RESYNCSLEEP Y This values defaults to 120 and defines the
number of seconds that the script will sleep on
a subscriber before attempting to issue a
uv/ud_repadmin sync command to correct the
replication suspension.

LOGKEEPCNT Y Determines the number of previous versions of
the trace file will be kept the default is 5

publisher
subscriber
disabled
unexpectedcode

N Set by the script via the result of the
ud/uv_repadmin report command in order to
determine the status of the system on which
the script is running

scriptruncountfile Y Defines the name of the file that contains the
last run counter (This must include the
$UNIREP_REMOTESYS as part of the name)

scriptworkinfile Y Scratch work file name (This must include the
$UNIREP_REMOTESYS as part of the name)

scriptworkoutfile Y Scratch work file name (This must include the
$UNIREP_REMOTESYS as part of the name)

scriptworkgrouplist Y Scratch work file name (This must include the
$UNIREP_REMOTESYS as part of the name)

machinename N Hostname of the machine running the script
UNIREP_REMOTESYS N Can be set via the DebugRemoteSys variable

for running outside of an EXCEPTION_ACTION
event

OUTSIDE_REPLICATION_MESSAGE N Used to set the subject line of the emails if the
script is being tested in debug mode

remotesys_hostname N Gathered from reptool using the
UNIREP_REMOTESYS identifier to get the host
name

Walkthrough of the Script Logic

1. The environment variables UDTHOME / UVHOME / UDTBIN / UVBIN / U2VERSION are set from

the Windows Registry Keys

2. The uv/ud_reapdmin status code environment variables are set, along with the script version

and cross group transaction override check variables

41

3. The script checks to see if a debug request or version request was passed to it via an ‘-d’ or -‘v’

option.

a. If a version request is made the version is reported and the script exits

b. If a debug request is made the debug option is set for the script

4. The scriptrunningname variable is checked

a. If the file is present, the presence of the file is reported to the log file and an email

notification sent and the script exists

5. The lastruncount is determined from the scriptruncountfile and copies the last tracefile to

tracefile.lastruncount

a. The lastruncount is incremented by 1, if this exceeds the maximum count then the

lastruncount is set to 1 and written back to the scriptruncountfile

6. The ud/uv_repadmin report command is used to determine the system status within replication.

The result can be

a. A Publisher

b. A Subscriber

c. Disabled

d. Undetermined

7. An email is sent out from the script detailing that replication was suspended along with the

contents of the script trace log

a. If the system is not a subscriber the script exits at this point as the recovery attempt will

only be run from a subscriber to avoid unwanted reciprocal firing of the script

8. Each group is checked in turn to ensure it has been correctly suspended. Each group will be

checked up to 10 times with a 5 second sleep between each check cycle.

a. An email notification of the success / failure of the checking process is then sent out

b. If the script was unable to confirm the suspension of all the groups an email is sent to

this effect with the script trace and the script will exit at this point.

9. A ping / connect check to the remote system and the results stored in trace file and sent in the

email

10. The script then sleeps for the defined RESYNCSLEEP period

11. The CROSS_GROUP_TRANSACTION variable is then checked

a. If not set the script will use the reptool/uvreptool engineering interface to determine if

cross group transactions are present on the system

12. If the CROSS_GROUP_TRANSACTION variable is set or cross group transactions are present on

the system then one single ud/uv_repadmin sync command is sent otherwise a separate sync

command is sent to each group in turn.

a. Ideally, we should be able to sync each group in turn but due to an unresolved product

issue if cross group transactions are present sending single sync commands will result in

a stalled condition in replication.

13. A ping / connect check to the remote system and the results stored in trace file and sent in the

email

14. The success or failure of the sync command(s) are then emailed out along with the script trace

and the script exits at this point.

42

Notes

Starting at version 1.6.4 the script was modified to improve deployment in a multi publisher /

subscriber environment. This required several of the control file names now have the

$UNIREP_REMOTESYS variable as part of the name. You can still change the name, but the name

must still contain $UNIREP_REMOTESYS as part of the name

Step 4 is designed to ensure that should multiple suspension events be encountered in quick

succession that the script only runs once during those events. This is based on customer experience

that if multiple copies of the script are running at the same time can result in further problems in

such ‘panic’ situations.

Step 6 ensures that any auto recovery attempt only takes place on a non-disabled subscribing

system. This is again based on customer experience in that allowing both systems to attempt

recovery can also result in further complications and a possible reciprocal firing of the script on the

other system. In terms of disablement If replication is disabled a ‘sync’ command will fail.

43

UniData and UniVerse RepWinExcepVariables.psm1

Both the UniVerse and UniData windows powershell examples use a psm1 file where some of the

variables you may wish to change such as the details around using Email and the default remote

system name.

class Variables
{
 static [string] $EmailFrom = "sender@example.com"
 static [string] $EmailTo = "recip1@example.com,recip2@example.com"
 static [string] $SMTPServer = "smtp.gmail.com"
 static [string] $SMTPPort = 587
 static [string] $SMTPSSL = $true
 static [string] $SMTPUserName = "xxxxxxxxxxxx"
 static [string] $SMTPPassword = "xxxxxxxxxxxx"
 static [string] $DebugRemoteSys = "primary"

}

44

UniData Example

Example Replication Exception PowerShell File for UniData

(c) Rocket Software 2014 - 2019 All Rights Reserved
Disclaimer of Warranties. Rocket Software disclaims to the fullest extent
authorized by law any and all other warranties, whether express or implied,
including, without limitation, any implied warranties
of merchantability or fitness for a particular purpose. Without limitation
of the foregoing, Rocket Software expressly does not warrant that:
(a) the software will meet your requi#ents [or expectations];
(b) the software or the software content] will be free of bugs, errors,
viruses or other defects;
(c) any results, output, or data provided through or generated by the
software will be accurate, up-to-date, complete or reliable;
(d) the software will be compatible with third party software;
(e) any errors in the software will be corrected.

1.6.0 JDS 07/02/19 First Windows Version
1.6.1 JDS 27/02/19 Changes made after Customer beta testing SRL @ CACI
1.6.3 JDS 29/03/19 First Customer Release Version
1.6.4 JDS 24/04/19 Previously the script had one run control file, this
has now been expanded to include
the remotesystem name to allow for replication
environments that have multiple systems
1.6.8 JDS 15/05/19 Remove execution of showud for UniVerse and Remove
Concurrent Install Checks for UniVerse
1.6.9 JDS 10/06/19 Prefix Commands with Paths if available
Add outside replication message to email subject if
running in debug
Get Remote System Name and test with ping

Using module ".\RepWinExcepVariables.psm1"

Check for -v (Version Switch) or -d (Debug Switch)
Param(
 [switch][bool]$v,
 [switch][bool]$d
)
Get Registry Values for UniData
$KEY = "HKLM:\SOFTWARE\Rocket Software\UniData\CurrentVersion"
$ErrorActionPreference = "stop"
$global:OUTSIDE_REPLICAITON_MESSAGE = ""
Try {
 $U2VERSION = (Get-ItemProperty $KEY).UDVersion
}
Catch {

45

 Write-Output "Exception Action Powershell - Unable to find Current
UniData Version in the Registry"
 Exit 1
}
$KEY = "HKLM:\SOFTWARE\Rocket Software\UniData\" + $U2VERSION
Try {
 $UDTHOME = (Get-ItemProperty $KEY).UDTHOME
}
Catch {
 Write-Output "Exception Action Powershell - Unable to find UniData Home
in the Registry"
 Exit 2
}
Try {
 $UDTBIN = (Get-ItemProperty $KEY).UDTBIN
}
Catch {
 Write-Output "Exception Action Powershell - Unable to find UniData Bin
in the Registry"
 Exit 3
}
Publishing group Status Codes
$PUB_STOP = 1
$PUB_EXIT = 2
$PUB_SHUTDOWN = 3
$PUB_RUNNING = 4
$PUB_DO_RECONFIG = 5
$PUB_DO_BACKSYNC = 6
$PUB_DO_FAILOVER = 7
Publishing Replication Status Codes
$REP_RUNNING = 11
$REP_SUSPENDED = 12
$REP_SYNCING = 13
$REP_DO_SUSPEND = 14
$REP_DO_SYNC = 15
$REP_EXIT = 16
$REP_DISABLED = 17
Subscribing Replication/group status codes.
$SUB_STOP = 21
$SUB_EXIT = 22
$SUB_SHUTDOWN = 23
$SUB_RUNNING = 24
$SUB_DO_RECONFIG = 25
$SUB_DO_SUSPEND = 27
$SUB_SYNCING = 28
$SUB_DO_FAILOVER = 29
$SUB_RESYNCING = 30
Script Version
$REP_EXCEP_SCRIPT_VERSION = "1.6.9"
Number of minutes to check before running script again

46

$PUBCHECKMIN = 2
$SUBCHECKMIN = 2
$DISCHECKMIN = 2
Sleep is in seconds not minutes
$RESYNCSLEEP = 120
Set number of Result logs to keep
$LOGKEEPCNT = 5
Cross Group Transactions Flag
$global:CROSS_GROUP_TRANSACTION = $false
Result Variables set in Functions
$global:allsuspended = $true
$global:allsynced = $true
Get Machine Name
$machinename = [string](hostname)
Check -v switch
if ($v.IsPresent) {
 Write-Output "UniData Home $UDTHOME"
 Write-Output "UniData Bin $UDTBIN"
 Write-Output "UniData Version $U2VERSION"
 Write-Output "Machine Name $machinename"
 Write-Output "Script Version $REP_EXCEP_SCRIPT_VERSION"
 exit 0
}
Check to see if script is running from Replication Exception and get
Replication Environment Variables
if ($d.IsPresent) {
 # If Debug Flag is in place - bypass Replication Environment Check
 $UNIREP_REMOTESYS = [Variables]::DebugRemoteSys
 $UNIREP_REPTYPE = ""
 $UNIREP_GRPNAME = ""
 $UNIREP_ERRCODE = ""
 $UNIREP_ERRSTRING = ""
 $global:OUTSIDE_REPLICAITON_MESSAGE = "(Debug Run) "
} else {
 Try {
 $UNIREP_REMOTESYS = Get-Content Env:\UNIREP_REMOTESYS
 }
 Catch {
 Write-Output "Exception Action Powershell - not being run from
Replication Exception"
 exit 5
 }
 Try {
 $UNIREP_REPTYPE = Get-Content Env:\UNIREP_REPTYPE
 }
 Catch {
 Write-Output "Exception Action Powershell - not being run from
Replication Exception"
 exit 5
 }

47

 Try {
 $UNIREP_GRPNAME = Get-Content Env:\UNIREP_GRPNAME
 }
 Catch {
 Write-Output "Exception Action Powershell - not being run from
Replication Exception"
 exit 5
 }
 Try {
 $UNIREP_ERRCODE = Get-Content Env:\UNIREP_ERRCODE
 }
 Catch {
 Write-Output "Exception Action Powershell - not being run from
Replication Exception"
 exit 5
 }
 Try {
 $UNIREP_ERRSTRING = Get-Content Env:\UNIREP_ERRSTRING
 }
 Catch {
 Write-Output "Exception Action Powershell - not being run from
Replication Exception"
 exit 5
 }
}
Set Exception Log File Names
$reportfilename = $UDTHOME + "\" + $UNIREP_REMOTESYS + "RepExcept.errlog"
$scriptrunningname = $UDTHOME + "\" + $UNIREP_REMOTESYS + "RepExcept.running"
$scriptruncountfile = $UDTHOME + "\" + $UNIREP_REMOTESYS + "RepExcept.cnt"
$scriptworkinfile = $UDTHOME + "\" + $UNIREP_REMOTESYS + "RepExcept.inwrk"
$scriptworkoutfile = $UDTHOME + "\" + $UNIREP_REMOTESYS + "RepExcept.outwrk"
$scriptworkgrouplist = $UDTHOME + "\" + $UNIREP_REMOTESYS +
"RepExcept.grplist"
Declare Send-Email Function
function Send-Email {
 $Body = ""
 $regex = ""
 foreach ($line in Get-Content $reportfilename) {
 if ($line -match $regex) {
 $Body = $Body + $line + "`r`n"
 }
 }
 "To: " + [Variables]::EmailTo >> $reportfilename
 "Subject: " + $global:OUTSIDE_REPLICAITON_MESSAGE + $Subject >>
$reportfilename
 try {
 $SMTPClient = New-Object
Net.Mail.SmtpClient([Variables]::SMTPServer, [Variables]::SMTPPort)
 $SMTPClient.EnableSsl = [Variables]::SMTPSSL

48

 $SMTPClient.Credentials = New-Object
System.Net.NetworkCredential([Variables]::SMTPUserName,
[Variables]::SMTPPassword);
 $SMTPClient.Send([Variables]::EmailFrom, [Variables]::EmailTo,
$global:OUTSIDE_REPLICAITON_MESSAGE + $Subject, $Body)
 }
 catch {
 "Failed to send email" >> $reportfilename
 $_.Exception.GetType().FullName + " " + $_.Exception.Message >>
$reportfilename
 }
 "" >> $reportfilename
}
Declare Function to remove running file check
function Remove-Run-File {
 try {
 Remove-Item -Path $scriptrunningname
 }
 catch {
 Write-Output "Exception Action Powershell - Unable to remove
$scriptrunningname"
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - Unable to remove $scriptrunningname"
 Send-Email
 exit 6
 }
}
Declare Function to get group names
function Get-Group-Names {
 cd $UDTBIN
 "Running ud_repadmin report -detail $UNIREP_REMOTESYS to get list of
groups" >> $reportfilename
 ud_repadmin report -detail $UNIREP_REMOTESYS > $scriptworkoutfile
 "" >> $reportfilename
 "Group Names" >> $reportfilename
 $grpcnt = 0
 foreach ($line in Get-Content $scriptworkoutfile) {
 if ($line -match $regex) {
 $tline = $line.Trim()
 if ($tline -ne "") {
 $words = $tline.Split(" ")
 if (($words[0] -eq "GROUP") -and ($words[2] -eq
"DISTRIBUTION")) {
 $groupname = $words[1].Substring(0,
$words[1].Length - 1)
 $groupname >> $reportfilename
 $grpcnt++
 if ($grpcnt -eq 1) {
 $groupname > $scriptworkgrouplist
 } else {

49

 $groupname >> $scriptworkgrouplist
 }
 }
 }
 }
 }
 "" >> $reportfilename
}
Declare Function to get Remote Systems Hostname
function Get-Remote-System-Hostname {
 1 > $scriptworkinfile
 2 >> $scriptworkinfile
 0 >> $scriptworkinfile
 0 >> $scriptworkinfile
 cd $UDTBIN
 $foundsystem = 0
 $global:remotesys_hostname = ""
 Get-Content $scriptworkinfile | reptool > $scriptworkoutfile
 foreach ($line in Get-Content $scriptworkoutfile) {
 if ($line -match $regex) {
 $tline = $line.Trim()
 if ($tline -ne "") {
 $words = $tline.Split("=")
 $morewords = $words[0].Split("[")
 if (($morewords[0] -eq "System") -and ($words[1] -eq
$UNIREP_REMOTESYS)) {
 $foundsystem = 1
 }
 if ($foundsystem -eq 1) {
 if ($morewords -eq "Host Name") {
 $global:remotesys_hostname =
$words[1]
 $foundsystem = 0
 break
 }
 }
 }
 }
 }
 if ($global:remotesys_hostname -eq "") {
 Write-Output "Unable to find host name for system
$UNIREP_REMOTESYS"
 }
}
Declare Function to perform Ping
function Do-Ping {
 if ($global:remotesys_hostname -ne "") {
 "" >> $reportfilename
 "Performing Test-Connection to $global:remotesys_hostname" >>
$reportfilename

50

 if (Test-Connection -ComputerName $global:remotesys_hostname -
Count 1 -Quiet) {
 "Connection Passed" >> $reportfilename
 } else {
 "Connection Failed" >> $reportfilename
 }
 "Performing ping to $global:remotesys_hostname" >>
$reportfilename
 ping $global:remotesys_hostname >> $reportfilename
 "Performing ping -4 to $global:remotesys_hostname" >>
$reportfilename
 ping $global:remotesys_hostname -4 >> $reportfilename
 "" >> $reportfilename
 }
}

Declare Function to check that each group is suspended
function Check-All-Suspended {
 "Checking to see if all the groups are Suspended" >> $reportfilename
 $trystart = 1
 cd $UDTBIN
 foreach ($line in Get-Content $scriptworkgrouplist) {
 if ($line -match $regex) {
 $groupname = $line
 for ($trycnt = $trystart; $trycnt -le 10; $trycnt++) {
 "Running ud_repadmin report GROUP $groupname DISTRIB
$UNIREP_REMOTESYS" >> $reportfilename
 ud_repadmin report GROUP $groupname DISTRIB
$UNIREP_REMOTESYS
 "Return Code was $LASTEXITCODE" >> $reportfilename
 if ($LASTEXITCODE -gt $SUB_RESYNCING) {
 "Report command failed, exiting powershell" >>
$reportfilename
 Write-Output "Exception Action Powershell -
ud_repadmin encountered an error and terminated"
 $Subject = "U2Replication $machinename Remote
System is $UNIREP_REMOTESYS - ud_repadmin report encountered an error"
 Send-Email
 Remove-Run-File
 exit 7
 } else {
 if (($LASTEXITCODE -eq $REP_SUSPENDED) -or
($LASTEXITCODE -eq $SUB_STOP) -or ($LASTEXITCODE -eq $SUB_EXIT)) {
 "Group is suspended" >> $reportfilename
 $trycnt = 11
 } else {
 if ($trycnt -eq 10) {
 $global:allsuspended = $false
 "Could not confirm Suspension of
group, number of retry attempts exceeded" >> $reportfilename

51

 } else {
 "Could not confirm Suspension of
group, retry attempt $trycnt, sleep 5 seconds and retry" >> $reportfilename
 Start-Sleep -Seconds 5
 $trystart += 1
 }
 }
 }
 }
 }
 }
 "" >> $reportfilename
 cd $UDTBIN
 showud >> $reportfilename
 "" >> $reportfilename
}
Declare Function to perform sync attempt to recover suspension
function Do-Sync {
 # Check for Transactions as if Transactions are present then we cannot
sync group by group until bug is fixed that stops it from working
 if (-Not($global:CROSS_GROUP_TRANSACTION)) {
 "Checking to see Transactions are being used as indicator not
set" >> $reportfilename
 6 > $scriptworkinfile
 1 >> $scriptworkinfile
 0 >> $scriptworkinfile
 0 >> $scriptworkinfile
 cd $UDTBIN
 Get-Content $scriptworkinfile | reptool > $scriptworkoutfile
 foreach ($line in Get-Content $scriptworkoutfile) {
 if ($line -match $regex) {
 $tline = $line.Trim()
 if ($tline -ne "") {
 $words = $tline.Split(" ")
 if (($words[0] -eq "TCR") -and ($words[1] -eq
"Created:")) {
 $numtcr = $words[2]
 if (-Not($numtcr -eq "0")) {
 $global:CROSS_GROUP_TRANSACTION =
$true
 "Transactions detected" >>
$reportfilename
 break
 }
 }
 }
 }
 }
 }
 "" >> $reportfilename

52

 cd $UDTBIN
 if ($global:CROSS_GROUP_TRANSACTION) {
 "Running ud_repadmin sync -wait -verbose $UNIREP_REMOTESYS" >>
$reportfilename
 ud_repadmin sync -wait -verbose $UNIREP_REMOTESYS >>
$reportfilename
 } else {
 foreach ($line in Get-Content $scriptworkgrouplist) {
 $groupname = $line
 "Running ud_repadmin sync -wait -verbose GROUP $groupname
DISTRIB $UNIREP_REMOTESYS" >> $reportfilename
 ud_repadmin sync -wait -verbose GROUP $groupname DISTRIB
$UNIREP_REMOTESYS >> $reportfilename
 }
 }
 # Check to see if all groups were sync'd okay
 foreach ($line in Get-Content $scriptworkgrouplist) {
 $groupname = $line
 "Running ud_repadmin report GROUP $groupname DISTRIB
$UNIREP_REMOTESYS" >> $reportfilename
 ud_repadmin report GROUP $groupname DISTRIB $UNIREP_REMOTESYS >>
$reportfilename
 "Return Code was $LASTEXITCODE" >> $reportfilename
 if (($LASTEXITCODE -eq $REP_SYNCING) -or ($LASTEXITCODE -eq
$REP_DO_SYNC) -or ($LASTEXITCODE -eq $REP_RUNNING) -or ($LASTEXITCODE -eq
$SUB_RUNNING) -or ($LASTEXITCODE -eq $SUB_SYNCING) -or ($LASTEXITCODE -eq
$SUB_RESYNCING) -or ($LASTEXITCODE -lt $REP_DISABLED)) {
 $groupsyncing = $true
 "Group is Syncing or Sync'd" >> $reportfilename
 } else {
 $global:allsynced = $false
 "Group is not Syncing or Sync'd" >> $reportfilename
 }
 }
 "" >> $reportfilename
}
Function Copy-Last-Run-Output {
 Try {
 $lastruncount = Get-Content $scriptruncountfile
 }
 Catch {
 $lastruncount = 0
 $lastruncount > $scriptruncountfile
 }
 $lastruncount = [int]($lastruncount)
 $lastruncount++
 $nextruncount = $lastruncount
 if ($nextruncount -gt $LOGKEEPCNT) {
 $nextruncount = 1
 }

53

 $nextruncount > $scriptruncountfile
 $copyname = $reportfilename + [string]$nextruncount
 Try {
 Copy-Item -Path $reportfilename -Destination $copyname
 }
 Catch {
 Write-Output "Exception Action Powershell - Unable to copy
$reportfilename to $copyname"
 }
}
Check to see if Script is Already Running
if (Test-Path -Path $scriptrunningname) {
 Write-Output "Exception Action Powershell - Found $scriptrunningname -
This indicates the exception script is currently running"
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - Found $scriptrunningname - This indicates the exception
script is currently running"
 Send-Email
 exit 4
}
Try {
 $dstring = Get-Date
 # Create Scriptrunning File
 "Run Started at $dstring" > $scriptrunningname
 # If a previous report file exists make a copy of it
 if (Test-Path -Path $reportfilename) {
 Copy-Last-Run-Output
 }
 Get-Remote-System-Hostname
 # Start new report file
 "UniData Replication Exception called at $dstring" > $reportfilename
 If ($global:OUTSIDE_REPLICAITON_MESSAGE -ne "") {
 "Running in Debug Mode Outside of Replication" >> $reportfilename
 }
 "Script Version=$REP_EXCEP_SCRIPT_VERSION" >> $reportfilename
 "UniData Home=$UDTHOME" >> $reportfilename
 "UniData Bin=$UDTBIN" >> $reportfilename
 "UniData Version=$U2VERSION" >> $reportfilename
 "Machine Name=$machinename" >> $reportfilename
 "" >> $reportfilename
 "Replication Environment Variables" >> $reportfilename
 "UNIREP_REMOTESYS=$UNIREP_REMOTESYS" >> $reportfilename
 "Remote Host Name=$global:remotesys_hostname" >> $reportfilename
 "UNIREP_REPTYPE=$UNIREP_REPTYPE" >> $reportfilename
 "UNIREP_GRPNAME=$UNIREP_GRPNAME" >> $reportfilename
 "UNIREP_ERRCODE=$UNIREP_ERRCODE" >> $reportfilename
 "UNIREP_ERRSTRING=$UNIREP_ERRSTRING" >> $reportfilename
 "" >> $reportfilename
 "Replication Status Error Codes" >> $reportfilename
 "PUB_STOP=$PUB_STOP" >> $reportfilename

54

 "PUB_EXIT=$PUB_EXIT" >> $reportfilename
 "PUB_SHUTDOWN=$PUB_SHUTDOWN" >> $reportfilename
 "PUB_RUNNING=$PUB_RUNNING" >> $reportfilename
 "PUB_DO_RECONFIG=$PUB_DO_RECONFIG" >> $reportfilename
 "PUB_DO_BACKSYNC=$PUB_DO_BACKSYNC" >> $reportfilename
 "PUB_DO_FAILOVER=$PUB_DO_FAILOVER" >> $reportfilename
 "REP_RUNNING=$REP_RUNNING" >> $reportfilename
 "REP_SUSPENDED=$REP_SUSPENDED" >> $reportfilename
 "REP_SYNCING=$REP_SYNCING" >> $reportfilename
 "REP_DO_SUSPEND=$REP_DO_SUSPEND" >> $reportfilename
 "REP_DO_SYNC=$REP_DO_SYNC" >> $reportfilename
 "REP_EXIT=$REP_EXIT" >> $reportfilename
 "REP_DISABLED=$REP_DISABLED" >> $reportfilename
 "SUB_STOP=$SUB_STOP" >> $reportfilename
 "SUB_EXIT=$SUB_EXIT" >> $reportfilename
 "SUB_SHUTDOWN=$SUB_SHUTDOWN" >> $reportfilename
 "SUB_RUNNING=$SUB_RUNNING" >> $reportfilename
 "SUB_DO_RECONFIG=$SUB_DO_RECONFIG" >> $reportfilename
 "SUB_DO_SUSPEND=$SUB_DO_SUSPEND" >> $reportfilename
 "SUB_SYNCING=$SUB_SYNCING" >> $reportfilename
 "SUB_DO_FAILOVER=$SUB_DO_FAILOVER" >> $reportfilename
 "SUB_RESYNCING=$SUB_RESYNCING" >> $reportfilename
 "" >> $reportfilename
 cd $UDTBIN
 showud >> $reportfilename
 "" >> $reportfilename
 $publisher = $false
 $subscriber = $false
 $disabled = $false
 $unexpectedcode = $false
 "Running ud_repadmin report -detail $UNIREP_REMOTESYS" >>
$reportfilename
 ud_repadmin report -detail $UNIREP_REMOTESYS >> $reportfilename
 "" >> $reportfilename
 "Is this system a publisher or subscriber or is replication disabled ?
Exit Code was $LASTEXITCODE" >> $reportfilename
 if ($LASTEXITCODE -lt $REP_DISABLED) {
 $publisher = $true
 "System is a publisher - No Recovery will take place" >>
$reportfilename
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - REPLICATION SUSPENDED (Publisher)"
 }
 if ($LASTEXITCODE -gt $REP_DISABLED) {
 $subscriber = $true
 "System is a subscriber" >> $reportfilename
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - REPLICATION SUSPENDED (Subscriber)"
 }
 if ($LASTEXITCODE -eq $REP_DISABLED) {

55

 $disabled = $true
 "Replication is disabled" >> $reportfilename
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - REPLICATION DISABLED"
 }
 if ($LASTEXITCODE -gt $SUB_RESYNCING) {
 $unexpectedcode = $true
 $subscriber = $false
 "Return code is outside expected Range, so the assumption the
System is a subscriber may be incorrect - No recovery will be performed" >>
$reportfilename
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - REPLICATION SUSPENDED (Subscriber with Unexpected Code)"
 }
 "" >> $reportfilename
 "Sending Email Notification of Suspension" >> $reportfilename
 "" >> $reportfilename
 Do-Ping
 Send-Email
 # Only Run Recovery Steps if System is a subscriber
 if ($subscriber) {
 Get-Group-Names
 Check-All-Suspended
 if ($global:allsuspended) {
 Write-Output "Exception Action Powershell - All groups
suspended - Powershell Sleep for $RESYNCSLEEP seconds"
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - Confirmed Suspension of the all Groups - Resync in 2
Minutes (Subscriber)"
 "Sleeping for $RESYNCSLEEP seconds before sync attempt" >>
$reportfilename
 Send-Email
 Start-Sleep -Seconds $RESYNCSLEEP
 "Woken up from Sleep" >> $reportfilename
 Do-Ping
 "" >> $reportfilename
 Do-Sync
 If ($global:allsynced) {
 Write-Output "Exception Action Powershell - Confirmed
Sync of the all Groups"
 $Subject = "U2Replication $machinename Remote System
is $UNIREP_REMOTESYS - Confirmed Sync of the all Groups (Subscriber)"
 } else {
 Write-Output "Exception Action Powershell - Unable to
Confirm Sync of the all Groups"
 $Subject = "U2Replication $machinename Remote System
is $UNIREP_REMOTESYS - Unable to Confirm Sync of the all Groups (Subscriber)"
 }
 Send-Email
 } else {

56

 Write-Output "Exception Action Powershell - Unable to
confirm all groups suspended"
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - Unable to Confirm Suspension of the all Groups - No
Resync (Subscriber)"
 Send-Email
 }
 }
}
Catch {
 Remove-Run-File
 Write-Output $_.Exception|format-list -force
 Write-Output "Exception Action Powershell - An Error Occurred"
 exit 8
}
Remove-Run-File
Write-Output "Exception Action Powershell - Reached Normal End of Exception
Action Powershell"
exit 0

57

UniVerse Example

Example Replication Exception PowerShell File for UniVerse

(c) Rocket Software 2014 - 2019 All Rights Reserved
Disclaimer of Warranties. Rocket Software disclaims to the fullest extent
authorized by law any and all other warranties, whether express or implied,
including, without limitation, any implied warranties
of merchantability or fitness for a particular purpose. Without limitation
of the foregoing, Rocket Software expressly does not warrant that:
(a) the software will meet your requi#ents [or expectations];
(b) the software or the software content] will be free of bugs, errors,
viruses or other defects;
(c) any results, output, or data provided through or generated by the
software will be accurate, up-to-date, complete or reliable;
(d) the software will be compatible with third party software;
(e) any errors in the software will be corrected.

1.6.0 JDS 07/02/19 First Windows Version
1.6.1 JDS 27/02/19 Changes made after Customer beta testing feedback SRL @
CACI
1.6.3 JDS 29/03/19 First Customer Release Version
1.6.4 JDS 24/04/19 Previously the script had one run control file, this
has now been expanded to include
the remotesystem name to allow for replication
environments that have multiple systems
1.6.8 JDS 15/05/19 Remove execution of showud for UniVerse and Remove
Concurrent Install Checks for UniVerse
1.6.9 JDS 10/06/19 Prefix Commands with Paths if available
Add outside replication message to email subject if
running in debug
Get Remote System Name and test with ping

Using module ".\RepWinExcepVariables.psm1"

Check for -v (Version Switch) or -d (Debug Switch)
Param(
 [switch][bool]$v,
 [switch][bool]$d
)
Get Registry Values for UniVerse
$KEY = "HKLM:\SOFTWARE\Rocket Software\UniVerse\CurrentVersion"
$ErrorActionPreference = "stop"
$global:OUTSIDE_REPLICAITON_MESSAGE = ""
Try {
 $U2VERSION = (Get-ItemProperty $KEY).UvVersion
}
Catch {

58

 Write-Output "Exception Action Powershell - Unable to find Current
UniVerse Version in the Registry"
 Exit 1
}
Try {
 $UVHOME=(Get-ItemProperty $KEY).UvHOME
}
Catch {
 Write-Output "Exception Action Powershell - Unable to find UniVerse
Home in the Registry"
 Exit 2
}
$UVBIN=$UVHOME + "\bin"
Publishing group Status Codes
$PUB_STOP = 1
$PUB_EXIT = 2
$PUB_SHUTDOWN = 3
$PUB_RUNNING = 4
$PUB_DO_RECONFIG = 5
$PUB_DO_BACKSYNC = 6
$PUB_DO_FAILOVER = 7
Publishing Replication Status Codes
$REP_RUNNING = 11
$REP_SUSPENDED = 12
$REP_SYNCING = 13
$REP_DO_SUSPEND = 14
$REP_DO_SYNC = 15
$REP_EXIT = 16
$REP_DISABLED = 17
Subscribing Replication/group status codes.
$SUB_STOP = 21
$SUB_EXIT = 22
$SUB_SHUTDOWN = 23
$SUB_RUNNING = 24
$SUB_DO_RECONFIG = 25
$SUB_DO_SUSPEND = 27
$SUB_SYNCING = 28
$SUB_DO_FAILOVER = 29
$SUB_RESYNCING = 30
Script Version
$REP_EXCEP_SCRIPT_VERSION = "1.6.9"
Number of minutes to check before running script again
$PUBCHECKMIN = 2
$SUBCHECKMIN = 2
$DISCHECKMIN = 2
Sleep is in seconds not minutes
$RESYNCSLEEP = 120
Set number of Result logs to keep
$LOGKEEPCNT = 5
Cross Group Transactions Flag

59

$global:CROSS_GROUP_TRANSACTION = $false
Result Variables set in Functions
$global:allsuspended = $true
$global:allsynced = $true
Get Machine Name
$machinename = [string](hostname)
Check -v switch
if ($v.IsPresent) {
 Write-Output "UniVerse Home $UVHOME"
 Write-Output "UniVerse Bin $UVBIN"
 Write-Output "UniVerse Version $U2VERSION"
 Write-Output "Machine Name $machinename"
 Write-Output "Script Version $REP_EXCEP_SCRIPT_VERSION"
 exit 0
}
Check to see if script is running from Replication Exception and get
Replication Environment Variables
if ($d.IsPresent) {
 # If Debug Flag is in place - bypass Replication Environment Check
 $UNIREP_REMOTESYS = [Variables]::DebugRemoteSys
 $UNIREP_REPTYPE = ""
 $UNIREP_GRPNAME = ""
 $UNIREP_ERRCODE = ""
 $UNIREP_ERRSTRING = ""
 $global:OUTSIDE_REPLICAITON_MESSAGE = "(Debug Run) "
} else {
 Try {
 $UNIREP_REMOTESYS = Get-Content Env:\UNIREP_REMOTESYS
 }
 Catch {
 Write-Output "Exception Action Powershell - not being run from
Replication Exception"
 exit 5
 }
 Try {
 $UNIREP_REPTYPE = Get-Content Env:\UNIREP_REPTYPE
 }
 Catch {
 Write-Output "Exception Action Powershell - not being run from
Replication Exception"
 exit 5
 }
 Try {
 $UNIREP_GRPNAME = Get-Content Env:\UNIREP_GRPNAME
 }
 Catch {
 Write-Output "Exception Action Powershell - not being run from
Replication Exception"
 exit 5
 }

60

 Try {
 $UNIREP_ERRCODE = Get-Content Env:\UNIREP_ERRCODE
 }
 Catch {
 Write-Output "Exception Action Powershell - not being run from
Replication Exception"
 exit 5
 }
 Try {
 $UNIREP_ERRSTRING = Get-Content Env:\UNIREP_ERRSTRING
 }
 Catch {
 Write-Output "Exception Action Powershell - not being run from
Replication Exception"
 exit 5
 }
}
Set Exception Log File Names
$reportfilename = $UVHOME + "\" + $UNIREP_REMOTESYS + "RepExcept.errlog"
$scriptrunningname = $UVHOME + "\" + $UNIREP_REMOTESYS + "RepExcept.running"
$scriptruncountfile = $UVHOME + "\" + $UNIREP_REMOTESYS + "RepExcept.cnt"
$scriptworkinfile = $UVHOME + "\" + $UNIREP_REMOTESYS + "RepExcept.inwrk"
$scriptworkoutfile = $UVHOME + "\" + $UNIREP_REMOTESYS + "RepExcept.outwrk"
$scriptworkgrouplist = $UVHOME + "\" + $UNIREP_REMOTESYS +
"RepExcept.grplist"
Declare Send-Email Function
function Send-Email {
 $Body = ""
 $regex = ""
 foreach ($line in Get-Content $reportfilename) {
 if ($line -match $regex) {
 $Body = $Body + $line + "`r`n"
 }
 }
 "To: " + [Variables]::EmailTo >> $reportfilename
 "Subject: " + $global:OUTSIDE_REPLICAITON_MESSAGE + $Subject >>
$reportfilename
 try {
 $SMTPClient = New-Object
Net.Mail.SmtpClient([Variables]::SMTPServer, [Variables]::SMTPPort)
 $SMTPClient.EnableSsl = [Variables]::SMTPSSL
 $SMTPClient.Credentials = New-Object
System.Net.NetworkCredential([Variables]::SMTPUserName,
[Variables]::SMTPPassword);
 $SMTPClient.Send([Variables]::EmailFrom, [Variables]::EmailTo,
$global:OUTSIDE_REPLICAITON_MESSAGE + $Subject, $Body)
 }
 catch {
 "Failed to send email" >> $reportfilename

61

 $_.Exception.GetType().FullName + " " + $_.Exception.Message >>
$reportfilename
 }
 "" >> $reportfilename
}
Declare Function to remove running file check
function Remove-Run-File {
 try {
 Remove-Item -Path $scriptrunningname
 }
 catch {
 Write-Output "Exception Action Powershell - Unable to remove
$scriptrunningname"
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - Unable to remove $scriptrunningname"
 Send-Email
 exit 6
 }
}
Declare Function to get group names
function Get-Group-Names {
 cd $UVBIN
 "Running uv_repadmin report -detail $UNIREP_REMOTESYS to get list of
groups" >> $reportfilename
 uv_repadmin report -detail $UNIREP_REMOTESYS > $scriptworkoutfile
 "" >> $reportfilename
 "Group Names" >> $reportfilename
 $grpcnt = 0
 foreach ($line in Get-Content $scriptworkoutfile) {
 if ($line -match $regex) {
 $tline = $line.Trim()
 if ($tline -ne "") {
 $words = $tline.Split(" ")
 if (($words[0] -eq "GROUP") -and ($words[2] -eq
"DISTRIBUTION")) {
 $groupname = $words[1].Substring(0,
$words[1].Length - 1)
 $groupname >> $reportfilename
 $grpcnt++
 if ($grpcnt -eq 1) {
 $groupname > $scriptworkgrouplist
 } else {
 $groupname >> $scriptworkgrouplist
 }
 }
 }
 }
 }
 "" >> $reportfilename
}

62

Declare Function to get Remote Systems Hostname
function Get-Remote-System-Hostname {
 1 > $scriptworkinfile
 2 >> $scriptworkinfile
 0 >> $scriptworkinfile
 0 >> $scriptworkinfile
 cd $UVBIN
 $foundsystem = 0
 $global:remotesys_hostname = ""
 Get-Content $scriptworkinfile | uvreptool > $scriptworkoutfile
 foreach ($line in Get-Content $scriptworkoutfile) {
 if ($line -match $regex) {
 $tline = $line.Trim()
 if ($tline -ne "") {
 $words = $tline.Split("=")
 $morewords = $words[0].Split("[")
 if (($morewords[0] -eq "System") -and ($words[1] -eq
$UNIREP_REMOTESYS)) {
 $foundsystem = 1
 }
 if ($foundsystem -eq 1) {
 if ($morewords -eq "Host Name") {
 $global:remotesys_hostname =
$words[1]
 $foundsystem = 0
 break
 }
 }
 }
 }
 }
 if ($global:remotesys_hostname -eq "") {
 Write-Output "Unable to find host name for system
$UNIREP_REMOTESYS"
 }
}
Declare Function to perform Ping
function Do-Ping {
 if ($global:remotesys_hostname -ne "") {
 "" >> $reportfilename
 "Performing Test-Connection to $global:remotesys_hostname" >>
$reportfilename
 if (Test-Connection -ComputerName $global:remotesys_hostname -
Count 1 -Quiet) {
 "Connection Passed" >> $reportfilename
 } else {
 "Connection Failed" >> $reportfilename
 }
 "Performing ping to $global:remotesys_hostname" >>
$reportfilename

63

 ping $global:remotesys_hostname >> $reportfilename
 "Performing ping -4 to $global:remotesys_hostname" >>
$reportfilename
 ping $global:remotesys_hostname -4 >> $reportfilename
 "" >> $reportfilename
 }
}

Declare Function to check that each group is suspended
function Check-All-Suspended {
 "Checking to see if all the groups are Suspended" >> $reportfilename
 $trystart = 1
 cd $UVBIN
 foreach ($line in Get-Content $scriptworkgrouplist) {
 if ($line -match $regex) {
 $groupname = $line
 for ($trycnt = $trystart; $trycnt -le 10; $trycnt++) {
 "Running uv_repadmin report GROUP $groupname DISTRIB
$UNIREP_REMOTESYS" >> $reportfilename
 uv_repadmin report GROUP $groupname DISTRIB
$UNIREP_REMOTESYS
 "Return Code was $LASTEXITCODE" >> $reportfilename
 if ($LASTEXITCODE -gt $SUB_RESYNCING) {
 "Report command failed, exiting powershell" >>
$reportfilename
 Write-Output "Exception Action Powershell -
uv_repadmin encountered an error and terminated"
 $Subject = "U2Replication $machinename Remote
System is $UNIREP_REMOTESYS - uv_repadmin report encountered an error"
 Send-Email
 Remove-Run-File
 exit 7
 } else {
 if (($LASTEXITCODE -eq $REP_SUSPENDED) -or
($LASTEXITCODE -eq $SUB_STOP) -or ($LASTEXITCODE -eq $SUB_EXIT)) {
 "Group is suspended" >> $reportfilename
 $trycnt = 11
 } else {
 if ($trycnt -eq 10) {
 $global:allsuspended = $false
 "Could not confirm Suspension of
group, number of retry attempts exceeded" >> $reportfilename
 } else {
 "Could not confirm Suspension of
group, retry attempt $trycnt, sleep 5 seconds and retry" >> $reportfilename
 Start-Sleep -Seconds 5
 $trystart += 1
 }
 }
 }

64

 }
 }
 }
 "" >> $reportfilename
 "" >> $reportfilename
}
Declare Function to perform sync attempt to recover suspension
function Do-Sync {
 # Check for Transactions as if Transactions are present then we cannot
sync group by group until bug is fixed that stops it from working
 if (-Not($global:CROSS_GROUP_TRANSACTION)) {
 "Checking to see Transactions are being used as indicator not
set" >> $reportfilename
 6 > $scriptworkinfile
 1 >> $scriptworkinfile
 0 >> $scriptworkinfile
 0 >> $scriptworkinfile
 cd $UVBIN
 Get-Content $scriptworkinfile | uvreptool > $scriptworkoutfile
 foreach ($line in Get-Content $scriptworkoutfile) {
 if ($line -match $regex) {
 $tline = $line.Trim()
 if ($tline -ne "") {
 $words = $tline.Split(" ")
 if (($words[0] -eq "TCR") -and ($words[1] -eq
"Created:")) {
 $numtcr = $words[2]
 if (-Not($numtcr -eq "0")) {
 $global:CROSS_GROUP_TRANSACTION =
$true
 "Transactions detected" >>
$reportfilename
 break
 }
 }
 }
 }
 }
 }
 "" >> $reportfilename
 cd $UVBIN
 if ($global:CROSS_GROUP_TRANSACTION) {
 "Running uv_repadmin sync -wait -verbose $UNIREP_REMOTESYS" >>
$reportfilename
 uv_repadmin sync -wait -verbose $UNIREP_REMOTESYS >>
$reportfilename
 } else {
 foreach ($line in Get-Content $scriptworkgrouplist) {
 $groupname = $line

65

 "Running uv_repadmin sync -wait -verbose GROUP $groupname
DISTRIB $UNIREP_REMOTESYS" >> $reportfilename
 uv_repadmin sync -wait -verbose GROUP $groupname DISTRIB
$UNIREP_REMOTESYS >> $reportfilename
 }
 }
 # Check to see if all groups were sync'd okay
 foreach ($line in Get-Content $scriptworkgrouplist) {
 $groupname = $line
 "Running uv_repadmin report GROUP $groupname DISTRIB
$UNIREP_REMOTESYS" >> $reportfilename
 uv_repadmin report GROUP $groupname DISTRIB $UNIREP_REMOTESYS >>
$reportfilename
 "Return Code was $LASTEXITCODE" >> $reportfilename
 if (($LASTEXITCODE -eq $REP_SYNCING) -or ($LASTEXITCODE -eq
$REP_DO_SYNC) -or ($LASTEXITCODE -eq $REP_RUNNING) -or ($LASTEXITCODE -eq
$SUB_RUNNING) -or ($LASTEXITCODE -eq $SUB_SYNCING) -or ($LASTEXITCODE -eq
$SUB_RESYNCING) -or ($LASTEXITCODE -lt $REP_DISABLED)) {
 $groupsyncing = $true
 "Group is Syncing or Sync'd" >> $reportfilename
 } else {
 $global:allsynced = $false
 "Group is not Syncing or Sync'd" >> $reportfilename
 }
 }
 "" >> $reportfilename
}
Function Copy-Last-Run-Output {
 Try {
 $lastruncount = Get-Content $scriptruncountfile
 }
 Catch {
 $lastruncount = 0
 $lastruncount > $scriptruncountfile
 }
 $lastruncount = [int]($lastruncount)
 $lastruncount++
 $nextruncount = $lastruncount
 if ($nextruncount -gt $LOGKEEPCNT) {
 $nextruncount = 1
 }
 $nextruncount > $scriptruncountfile
 $copyname = $reportfilename + [string]$nextruncount
 Try {
 Copy-Item -Path $reportfilename -Destination $copyname
 }
 Catch {
 Write-Output "Exception Action Powershell - Unable to copy
$reportfilename to $copyname"
 }

66

}
Check to see if Script is Already Running
if (Test-Path -Path $scriptrunningname) {
 Write-Output "Exception Action Powershell - Found $scriptrunningname -
This indicates the exception script is currently running"
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - Found $scriptrunningname - This indicates the exception
script is currently running"
 Send-Email
 exit 4
}
Try {
 $dstring = Get-Date
 # Create Scriptrunning File
 "Run Started at $dstring" > $scriptrunningname
 # If a previous report file exists make a copy of it
 if (Test-Path -Path $reportfilename) {
 Copy-Last-Run-Output
 }
 Get-Remote-System-Hostname
 # Start new report file
 "UniVerse Replication Exception called at $dstring" > $reportfilename
 If ($global:OUTSIDE_REPLICAITON_MESSAGE -ne "") {
 "Running in Debug Mode Outside of Replication" >> $reportfilename
 }
 "Script Version=$REP_EXCEP_SCRIPT_VERSION" >> $reportfilename
 "UniVerse Home=$UVHOME" >> $reportfilename
 "UniVerse Bin=$UVBIN" >> $reportfilename
 "UniVerse Version=$U2VERSION" >> $reportfilename
 "Machine Name=$machinename" >> $reportfilename
 "" >> $reportfilename
 "Replication Environment Variables" >> $reportfilename
 "UNIREP_REMOTESYS=$UNIREP_REMOTESYS" >> $reportfilename
 "Remote Host Name=$global:remotesys_hostname" >> $reportfilename
 "UNIREP_REPTYPE=$UNIREP_REPTYPE" >> $reportfilename
 "UNIREP_GRPNAME=$UNIREP_GRPNAME" >> $reportfilename
 "UNIREP_ERRCODE=$UNIREP_ERRCODE" >> $reportfilename
 "UNIREP_ERRSTRING=$UNIREP_ERRSTRING" >> $reportfilename
 "" >> $reportfilename
 "Replication Status Error Codes" >> $reportfilename
 "PUB_STOP=$PUB_STOP" >> $reportfilename
 "PUB_EXIT=$PUB_EXIT" >> $reportfilename
 "PUB_SHUTDOWN=$PUB_SHUTDOWN" >> $reportfilename
 "PUB_RUNNING=$PUB_RUNNING" >> $reportfilename
 "PUB_DO_RECONFIG=$PUB_DO_RECONFIG" >> $reportfilename
 "PUB_DO_BACKSYNC=$PUB_DO_BACKSYNC" >> $reportfilename
 "PUB_DO_FAILOVER=$PUB_DO_FAILOVER" >> $reportfilename
 "REP_RUNNING=$REP_RUNNING" >> $reportfilename
 "REP_SUSPENDED=$REP_SUSPENDED" >> $reportfilename
 "REP_SYNCING=$REP_SYNCING" >> $reportfilename

67

 "REP_DO_SUSPEND=$REP_DO_SUSPEND" >> $reportfilename
 "REP_DO_SYNC=$REP_DO_SYNC" >> $reportfilename
 "REP_EXIT=$REP_EXIT" >> $reportfilename
 "REP_DISABLED=$REP_DISABLED" >> $reportfilename
 "SUB_STOP=$SUB_STOP" >> $reportfilename
 "SUB_EXIT=$SUB_EXIT" >> $reportfilename
 "SUB_SHUTDOWN=$SUB_SHUTDOWN" >> $reportfilename
 "SUB_RUNNING=$SUB_RUNNING" >> $reportfilename
 "SUB_DO_RECONFIG=$SUB_DO_RECONFIG" >> $reportfilename
 "SUB_DO_SUSPEND=$SUB_DO_SUSPEND" >> $reportfilename
 "SUB_SYNCING=$SUB_SYNCING" >> $reportfilename
 "SUB_DO_FAILOVER=$SUB_DO_FAILOVER" >> $reportfilename
 "SUB_RESYNCING=$SUB_RESYNCING" >> $reportfilename
 "" >> $reportfilename
 cd $UVBIN
 "" >> $reportfilename
 $publisher = $false
 $subscriber = $false
 $disabled = $false
 $unexpectedcode = $false
 "Running uv_repadmin report -detail $UNIREP_REMOTESYS" >>
$reportfilename
 uv_repadmin report -detail $UNIREP_REMOTESYS >> $reportfilename
 "" >> $reportfilename
 "Is this system a publisher or subscriber or is replication disabled ?
Exit Code was $LASTEXITCODE" >> $reportfilename
 if ($LASTEXITCODE -lt $REP_DISABLED) {
 $publisher = $true
 "System is a publisher - No Recovery will take place" >>
$reportfilename
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - REPLICATION SUSPENDED (Publisher)"
 }
 if ($LASTEXITCODE -gt $REP_DISABLED) {
 $subscriber = $true
 "System is a subscriber" >> $reportfilename
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - REPLICATION SUSPENDED (Subscriber)"
 }
 if ($LASTEXITCODE -eq $REP_DISABLED) {
 $disabled = $true
 "Replication is disabled" >> $reportfilename
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - REPLICATION DISABLED"
 }
 if ($LASTEXITCODE -gt $SUB_RESYNCING) {
 $unexpectedcode = $true
 $subscriber = $false

68

 "Return code is outside expected Range, so the assumption the
System is a subscriber may be incorrect - No recovery will be performed" >>
$reportfilename
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - REPLICATION SUSPENDED (Subscriber with Unexpected Code)"
 }
 "" >> $reportfilename
 "Sending Email Notification of Suspension" >> $reportfilename
 "" >> $reportfilename
 Do-Ping
 Send-Email
 # Only Run Recovery Steps if System is a subscriber
 if ($subscriber) {
 Get-Group-Names
 Check-All-Suspended
 if ($global:allsuspended) {
 Write-Output "Exception Action Powershell - All groups
suspended - Powershell Sleep for $RESYNCSLEEP seconds"
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - Confirmed Suspension of the all Groups - Resync in 2
Minutes (Subscriber)"
 "Sleeping for $RESYNCSLEEP seconds before sync attempt" >>
$reportfilename
 Send-Email
 Start-Sleep -Seconds $RESYNCSLEEP
 "Woken up from Sleep" >> $reportfilename
 Do-Ping
 "" >> $reportfilename
 Do-Sync
 If ($global:allsynced) {
 Write-Output "Exception Action Powershell - Confirmed
Sync of the all Groups"
 $Subject = "U2Replication $machinename Remote System
is $UNIREP_REMOTESYS - Confirmed Sync of the all Groups (Subscriber)"
 } else {
 Write-Output "Exception Action Powershell - Unable to
Confirm Sync of the all Groups"
 $Subject = "U2Replication $machinename Remote System
is $UNIREP_REMOTESYS- Unable to Confirm Sync of the all Groups (Subscriber)"
 }
 Send-Email
 } else {
 Write-Output "Exception Action Powershell - Unable to
confirm all groups suspended"
 $Subject = "U2Replication $machinename Remote System is
$UNIREP_REMOTESYS - Unable to Confirm Suspension of the all Groups - No
Resync (Subscriber)"
 Send-Email
 }
 }

69

}
Catch {
 Remove-Run-File
 Write-Output $_.Exception|format-list -force
 Write-Output "Exception Action Powershell - An Error Occurred"
 exit 8
}
Remove-Run-File
Write-Output "Exception Action Powershell - Reached Normal End of Exception
Action Powershell"
exit 0

70

Chapter 2: Introduction to the Monitor

Phantoms

The Monitor Phantoms were also developed as a proactive monitoring tool for U2 Replication and

are again designed to send emails as an advance warning of events that need an Administrators

attention before they develop into a larger problem. Although the monitor phantoms are designed

to and will only run on a subscriber system, there are components such as the replication

configuration checker and performance monitoring than can also run on a publisher. Therefore, the

suite of programs can be installed on both the publisher and subscriber systems.

The Monitor Phantoms are deployed into an account of your choice. Our recommendation would be

to be a create a new account specifically for this purpose and ensure the account itself is not

replicated. All the source code for the monitor phantoms will be left on the subscribing system for

your review and addition. The source code deployment and setup is done via a VB.NET program

that we provide. The source code once deployed will be stored in a file ROCKET.BP.

We recommend the program is installed into C:\deploy on a client PC and then the application can

be installed from the RepPhantoms subdirectory using the Microsoft Click-Once deployment.

Our current recommendation is to run with RW_IGNORE_ERROR set to 1. With

RW_IGNORE_ERROR set to 1 then if a replication writer process encounters an error the error is

logged to the replication writer error log file (rw.errlog on UniData and uvrw.errlog on UniVerse)

without suspending replication. If RW_IGNORE_ERROR is set to 0 then replication is suspended

each time a replication writer process encounters an error.

Following our recommendation of RW_IGNORE_ERROR to be set to 1 then unless the error log file

is regularly checked, errors could go unnoticed. The purpose of one of the phantoms is to scan the

error log at defined intervals and then send email notifications to a defined list of recipients.

The purpose of the second phantom is to monitor the LSN (Logical Sequence Number) of U2

Replication updates. Each record update in each replication group is given a sequentially issued LSN

reference. As the update moves through the replication system it’s marked as Pub Done, Sub Got,

Sub Available and Sub Done. The Replication Monitor Tool in XAdmin shows these counts and

unless the monitor is regularly viewed any potential problems could go unnoticed for a period time.

The second phantom takes a snap shot of the LSN counts at defined intervals. It then checks those

counts and the overall group status to the previous counts.

• If the overall group status is anything other than SUB_SYNCING or SUB_RUNNING the

group will be reported to be in error.

• If all the LSN Counts are equal then the group is not considered to be in error.

• If the LSN Counts indicate a stall in processing in the subscriber receiving or applying

updates then the group will be reported to be in error.

71

The second phantom could be updated to also report on slowdowns of LSN updates or to report if a

subscriber is falling further behind a publisher on each iteration. We do provide the source code for

the server side programs for your review and addition.

The phantoms were developed to use mailx/sendmail in Unix as the email client. On windows we’re

using a smtp gmail account and internally we’ve uses a second VB.NET program to send the emails.

We will not be assisting in helping you to setup mailx/sendmail or gmail or develop VB.NET

programs to send email messages.

Starting at version 1.4.1 the performance monitoring / gathering screen was added. This screen

enables you to turn on and off the performance monitoring capabilities of U2 Replication. The

gathering function gathers the performance statistics and places them into server ‘csv’ files that can

be imported into Excel for further analysis.

72

Using the VB.NET Deployment Program

When you first use the program, the following screen will be displayed.

Login Form

73

You are then required to complete the details that are required to connect to the subscribing

system account that you wish to use to install the monitor programs. We currently recommend that

this account is not part of U2 Replication and this will avoid extra potential reconfiguration of U2

Replication that may be needed to get the programs to install.

• Machine - Enter the name or the ip address of the machine you wish to connect to install or

maintain the U2 Replication Monitor Phantoms.

• User - The name of the user that will be used to connect to the machine.

• Password - The password for the user that will used to connect to the machine.

• Application - (UniData Only and Optional) UniData provides an extra level of security in

that an optional Application Name can be provided to the UO Connection. If this is being

used then the name of the UniObjects Application Control can be provided here.

• Account - The name of the account you wish to use to maintain and run the monitor

phantoms.

o On UniVerse this can be the name as specified in UV.ACCOUNT file or the path

name to the account.

o On UniData this has to be the path name to the account.

• UniVerse Check Box - Check this box if you wish to connect to UniVerse on the machine.

• UniData Check Box - Check this box if you wish to connect to UniData on the machine.

• Login Button - This button will become available when you are allowed to Login to the

machine with the connection credentials as defined in the form. Once you’ve successfully

Logged In the button will be disabled.

• Logout Button - Initially disabled this button will become active when you’ve

successfully logged in. When enabled it allows you to Logout / Disconnect from the

machine. There will also be a clean up of any left over temporary items that may have

been left on the system prior to the release of the 1.7.0 versions of the programs

• Report Versions Button – This Button will the versions of Client Software, Master Software

/ Scripts and the versions of the Software / Scripts installed on the server.

• Mon Parameters Button - This button when enabled allows the Parameters form where the

parameters for the Monitors can be maintained. The Monitors can also be stopped and

started from the Parameters Screen.

• Update Defaults Button - This button allows you to store your login credentials (minus the

password) to be used as the default values when you enter the login screen again.

• Create Files Button - This button will become available if the application detects that the

ROCKET.BP / REP.PARAMS file do not exist in the account on machine you logged into and

when pressed will create those files.

74

o You will need to use the Create Files Button the first time after connecting to a

new machine or new account.

• Install / Upgrade / Reinstall Programs Button - This button when enabled will change its

title from Install to Upgrade to Reinstall.

o When the button is labelled ‘Install’ the application has detected the programs

needed to run the monitor phantoms have yet to be installed on the system and

will install them when pressed.

▪ You will need to use the ‘Install’ button the first time you’ve connected

to a new account / new machine once you’ve used the ‘Create Files’

Button

o When the Label is Upgrade the application has detected newer versions of the

programs are available and pressing Upgrade will upgrade the programs (Note if

the monitor processes are running on the machine they will need to be stopped

and restarted to pick up the newer versions of the programs).

o When the label is ‘Reinstall’ it allows you to reinstall the programs if required to do

so.

o As part of this process a copy of the example exception scripts for UNIX detailed

earlier in this document are also placed in the file ROCKET.BP on the server.

o There will also be a clean up of any left over temporary items that may have been

left on the system prior to the release of the 1.7.0 versions of the programs

• Performance Button – This button when enabled will allow you to enter the performance

monitoring and capture screen

o Version 1.4.1 and above of the Host Programs need to be installed for this button

to be enabled.

75

Monitor Parameters Form

Once you’ve successfully connected to the machine, created the files and installed the programs on

the server you’ll be allowed to enter the Monitor Parameters Form where a screen similar to the one

below will be displayed. The screen below is one from one of our internal machines.

• Define Pub / Sub Test File - This is the name of VOC pointer in the target account that

should point to a replicated file. The replication status of that file is then examined to

determine the publisher / subscriber status of the machine. This file has to be a ‘Subscribed

File’ for all of the functionality to work correctly.

• @Domain Name and Senders Name - These values will be combined to produce an email

address of 'Senders Name @ Domain Name'. This email address will be used by monitoring

programs as the 'Senders' email address of any email notification sent out.

76

• Hostname is the name of the machine that the monitoring processes will be running on. If

you use the Commit Updates button and this value is blank it will default to the hostname

of the machine you are connected to.

• Write Monitor Check Period - This defines how often that the 'Replication Writer Error Log

Monitor' will scan the Error Log File. It is defined in minutes. A value of 30 would result in

the Error Log being scanned every 30 minutes.

• Group Status Monitor Check Period - This defines how often that the 'Group Status and

LSN Monitor' will scan each replication. It is defined in minutes. A value of 15 would result

in each group being scanned every 15 minutes.

• Send Emails To - This is the list of email recipients that will receive any notification from

the monitoring phantoms. On a Unix system this will be a comma delimited list as the

default mail client of mailx uses that.

o If you change to a different mail client then the values entered here will need to

confirm with that change and you will also need to modify the monitoring

programs in ROCKET.BP accordingly.

o For Windows systems please you’ll need to develop your own extra emailing

program.

• Search Path to Mailx - (UNIX Only) If the path to the mailx executable is not defined in the

default path of the user running the monitor phantoms then the path can be fully defined

here.

• Commit Updates Button - When pressed this Button will write the parameters back to the

REP.PARAMS file on the machine.

• Replication Writer Errlog Monitor - This will display two messages in relation to the status

of the Monitor Phantom.

o The first message will read 'Stop Not Set' or 'Stop Set'. A message of 'Stop Not

Set' indicates that no 'STOP' flag is present in the REP.PARAMS file for the

Monitor. A Message of 'Stop Set' indicates that the 'STOP' flag has been set in the

REP.PARAMS file and the monitor process will check that flag during it's next

checking period and then close down.

o The second message will read 'Monitor Not Running' or 'Monitor Running'. A

message of 'Monitor Not Running' indicates that the monitor process could not be

found in the current list of processes using the PORT.STATUS verb. Similarly, a

message of 'Monitor Running' indicates the monitor process was found in the

current list of processes.

o The status of each message controls the availability of the other buttons in the

container.

77

▪ Set Stop Button - This button when enabled and pressed will set the

'STOP' flag in the REP.PARAMS file for the process to check during the

next checking period.

▪ Start Monitor Button - This button when enabled and pressed will send a

request to the server to start the monitoring process as a phantom

process on the machine.

• Last Error Sent – This will display the text used for the last email message that was

generated for sending

• Group Status and LSN Monitor - For an explanation of the first two messages and two

buttons see the above on the 'Replication Writer Errlog Monitor'.

• Test Reptool - This button when enabled and pressed allows a test of the programs on the

server that interface with the reptool / uvreptool command. If successful then it will return

the Status together with the Pub Done,Sub Done and Sub Got LSN Counters along with

the level of the replication group and the number of free dynamic file slots to a message

box.

o If these are not returned as above then an error has occurred in that interface and

needs to be investigated.

78

Performance Form

Once you’ve successfully connected to the machine, created the files and installed version 1.4.1 or above

of the programs on the server you’ll be allowed to enter the Performance Form where a screen like the

one below will be displayed. In terms of gathering the performance data this can be done on the

publisher or subscriber and in our experience is more useful if taken from a publishing system.

• Start Performance Monitoring – This will start the performance monitoring part of replication on

the server and start to gather performance data.

• Stop Performance Monitoring – This will stop the performance monitoring part of replication on

the server and stop the gathering of performance data.

• Show Status Array – This is a test function and will display the last available overview of the

performance data. If no monitoring has been done before or a monitoring sequence is currently

active not all of the information will be available (See screenshot on the next page)

79

• Gather Performance Results – This will combine all the performance data into four CSV files

located in ROCKET.BP on the server. These files can be subsequently uploaded onto a client PC

and used in tools such as excel for further analysis of the information

o BufferUpdateData.CSV contains the Replication Buffer Usage during the test period

o GroupLatencyData.CSV contains the latency information during the test period

o GroupPerfData.CSV contains the group performance data during the test period

o ObjectUpdateData.CSV contains the details about each file during the test period.

80

81

Server-Side Menus

Once the VB.NET program has been used to deploy all the programs the server. All the options that are available

from the VB.NET program are also now available on the server from REPMON.MENU

This allows you to login to the account on the server where you installed the programs and use a green screen

method of accessing all the same options.

This allows you another method of accessing the options should something fail with the VB.NET program. It also

will also allow you to see any error that may be happening on the server side that is stopping the VB.NET program

from working correctly.

You can access this by typing REPMON.MENU at ECL / TCL in the account where the programs were installed. All

the source code for the programs is also kept on the server.

82

83

Extra Programs Supplied

CHK.REP.CFG

This program can be used to scan the repsys and repconfig files and check for some common configuration errors

and provide advise on the settings of other parameters. This program is still is a beta phase so any feedback is

appreciated.

REP.CONFIGFILE

This program can be used to add or remove files from the repconfig or repacct.def file without having to edit

them. This program is still is a beta phase so any feedback is appreciated.

Syntax REP.CONFIGFILE ADD|REMOVE {{EXCLUDED }file} TO {group|REPACCT.DEF|ALL}

PUBLISHER.SYNC.ONE.BY.ONE

This program is designed to sync each group in turn as opposed to issuing a sync call to replication. This program

should not be used if use cross group transactions and is still in a beta phase an any feedback is appreciated.

REP.FREE.FILE.SLOTS

This program is designed to show the number of free reserved file slots in an account level group defined via the

RESERVED_FILE_SPACE. This will be useful for customer who wish to ensure they do not run out of slots,

resulting in CREATE.FILE failures.

PUB.DISPLAY.LSNS

This program can be run on the publisher and will show the delta of LSNs for each replication group between pub

done to sub done and pub done to sub got.

84

offline_log_enq

This is a UNIX shell script that be run when UniVerse or UniData is stopped and it will report in what state each

group will start when UniVerse or UniData is started.

85

Disaster Recovery Notice

Designing, building, implementing and maintaining your Disaster Recovery solution is very complex, including

server, firmware, storage, and networking. Configuring and implementing replication to meet your Disaster

Recovery Service Level Agreements (SLAs) and requirements, while considering the performance and current

SLAs in your production environment requires planning and experience. U2 Replication is not a product where

you should “Teach Yourself”. Disaster Recovery is not a place to “Learn on the Job”. Inadvertent omissions and

mistakes during implementation may have severe consequences for your data and your organization.

Please include Rocket U2 Education and Rocket Solutioning Services in your plan for success.

There are five products Rocket Software does not recommend that you implement by yourself without Rocket U2

Education for your staff or assistance Rocket Solutioning Services:

1. Automatic Data Encryption (ADE)

2. Recoverable File System (RFS)

3. U2 Audit Logging

4. U2 Replication

5. Web/DE

Rocket U2 Education supplies standard courses to learn U2 Replication. These should be included in your overall

plan for success.

We “Highly” recommend you rely upon the experience gained by many installations that Rocket Solutioning

Services has performed.

Rocket Solutioning Services offers standard packages of services to assist you in implementing U2 Replication

which includes methodologies, project plans, implementation assistance, knowledge transfer to your staff, post

“Go Live” assistance, and the “As Built” Document defining how your system was implemented which includes

recovery procedures.

The “As Built” Document is distributed to your staff, your Application Provider (if applicable) and the Rocket U2

Support organization. These multiple layers of support all will assist you in getting your system back up when

failure occurs. They all need to be informed as to what was implemented.

Should you still wish to attempt this yourself (not recommended), Rocket Solutioning Services offers a “Validation

Package” where we review what you have implemented and make recommendations for an effective

implementation.

Restating:

Please include Rocket U2 Education and Rocket Solutioning Services in your plan for success.

