
UniVerse 11.1

Indexed Subroutine Enhancement

Indexed Subroutine Enhancement

Agenda

 Overview

 Indexed Subroutine behavior

 New @variable introduced at 11.1

 Impact on existing applications

 Example

 Performance comparison

Indexed Subroutine Enhancement

Overview

 A new @-variable (@IDX.IOTYPE) has been added at

UniVerse 11.1 which allows an index based on a

BASIC subroutine to perform some functions similar

to SQL based file triggers.

 @IDX.IOTYPE can be accessed within an indexed

subroutine to determine the type of I/O operation

being performed.

 An indexed subroutine will typically have less

overhead than a SQL based trigger and may be more

performant for certain operations.

Indexed Subroutine Enhancement

UniVerse Indexed Subroutine Behavior

 What happens when writing/deleting a record in a file

which has an Index based on a BASIC subroutine

 The subroutine is called once when adding a new record

to the file or when deleting an existing record.

 On an update to an existing record, the subroutine is

called twice.

 First to evaluate the current value of the index.

 Second to evaluate the new value of the index.

 This is done to determine if an index update is needed.

Indexed Subroutine Enhancement

UniVerse Indexed Subroutine Behavior

 Prior to 11.1, there was no way to determine what type

of I/O operation was being performed (i.e. insert,

update, or delete) while in the subroutine.

 At UniVerse release 11.1, the @variable @IDX.IOTYPE

has been introduced.

 While the indexed subroutine is executing, the

@IDX.IOTYPE variable contains a numeric value

corresponding to the type of I/O operation being

performed.

Indexed Subroutine Enhancement

Possible Values for @IDX.IOTYPE

 0 is returned when checked outside an indexed

subroutine

 1 is returned for an INSERT (i.e. when a new record is

being added to the file)

 2 is returned for a DELETE (i.e. when an existing

record is being deleted from the file)

Indexed Subroutine Enhancement

Possible values for @IDX.IOTYPE

 3 is returned for an UPDATE when the subroutine is

called to evaluate the original index value of an

existing record (@RECORD contains original record

contents)

 4 is returned for an UPDATE when the subroutine is

called to evaluate the new index value of an existing

record (@RECORD contains new record contents)

Indexed Subroutine Enhancement

No Impact on Existing Applications

 This change does not alter how UniVerse indices

functioned prior to 11.1.

 The only change done at 11.1 related to this

enhancement is that @IDX.IOTYPE is now available

for use within an indexed BASIC subroutine.

 Indexes based on BASIC subroutines which do not

use @IDX.IOTYPE will not be impacted.

Indexed Subroutine Enhancement

Indexed Subroutine Example

0001 SUBROUTINE INDEX.SUB(RTNVAL)

0002 COMMON /INDEX.SUB/ OPENFLAG,F.AUDIT,OLDRECORD

0003 RTNVAL = "" ;* Set index value to "" for NO.NULLS index

0004 OPERATIONS = "INSERT":@FM:"DELETE":@FM:"UPDATE":@FM:"UPDATE"

0005 IF NOT(OPENFLAG) THEN

0006 OPEN "AUDIT.FILE" TO F.AUDIT ELSE STOP "CANNOT OPEN AUDIT.FILE"

0007 OPENFLAG = 1

0008 END

0009 *

(continued on next page)

Indexed Subroutine Enhancement

0010 * The following case statement can be used to execute any specific

0011 * operations related to the type of operation being performed.

0012 *

0013 AUDIT.REC = ''

0014 BEGIN CASE

0015 CASE @IDX.IOTYPE = 1 ; * INSERT

0016 CASE @IDX.IOTYPE = 2 ; * DELETE

0017 CASE @IDX.IOTYPE = 3 ; * UPDATE BEFORE

0018 OLDRECORD = LOWER(@RECORD)

0019 CASE @IDX.IOTYPE = 4 ; * UPDATE AFTER

0020 AUDIT.REC<2> = OLDRECORD

0021 CASE 1

0022 RETURN

0023 END CASE

0024 IF @IDX.IOTYPE # 3 THEN

0025 RECID = @DATE:"*":SYSTEM(12):"*":@ID

0026 AUDIT.REC<1> = OPERATIONS<@IDX.IOTYPE>

0027 WRITE AUDIT.REC ON F.AUDIT,RECID

0028 END

0029 RETURN

0030 END

Indexed Subroutine Enhancement

Creating an Index Subroutine

 BASIC BP INDEX.SUB

 CATALOG BP INDEX.SUB

 CT DICT TEST.IDX INDEX.ITYPE

 0001: I

 0002: SUBR(INDEX.SUB)

 .

 CREATE.INDEX TEST.IDX INDEX.ITYPE NO.NULLS

 BUILD.INDEX TEST.IDX INDEX.ITYPE

Indexed Subroutine Enhancement

Performance Test Example

 Comparison testing done at 11.1.0 on AIX, HP, and

11.1.1 on Windows platforms.

 Testing was done using an indexed or trigger

subroutine which simply returned after being called.

 Test program wrote 2 million records into both empty

and full files using either index or trigger.

 Elapsed time to perform test was consistently 2 to 3

times longer for trigger than indexed subroutine.

 Your mileage may vary.

